Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057891

RESUMO

Reliable cell labeling and tracking techniques are imperative for elucidating the intricate and ambiguous interactions between mesenchymal stromal cells (MSCs) and tumors. Here, we explore fluorescent photoconvertible nanoengineered vesicles to study mMSC migration in brain tumors. These 3 µm sized vesicles made of carbon nanoparticles, Rhodamine B (RhB), and polyelectrolytes are readily internalized by cells. The dye undergoes photoconversion under 561 nm laser exposure with a fluorescence blue shift upon demand. The optimal laser irradiation duration for photoconversion was 0.4 ms, which provided a maximal blue shift of the fluorescent signal label without excessive laser exposure on cells. Vesicles modified with an extra polymer layer demonstrated enhanced intracellular uptake without remarkable effects on cell viability, motility, or proliferation. The optimal ratio of 20 vesicles per mMSC was determined. Moreover, the migration of individual mMSCs within 2D and 3D glioblastoma cell (EPNT-5) colonies over 2 days and in vivo tumor settings over 7 days were traced. Our study provides a robust nanocomposite platform for investigating MSC-tumor dynamics and offers insights into envisaged therapeutic strategies. Photoconvertible vesicles also present an indispensable tool for studying complex fundamental processes of cell-cell interactions for a wide range of problems in biomedicine.

2.
Biomater Adv ; 158: 213759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227987

RESUMO

While microbubbles (MB) are routinely used for ultrasound (US) imaging, magnetic MB are increasingly explored as they can be guided to specific sites of interest by applied magnetic field gradient. This requires the MB shell composition tuning to prolong MB stability and provide functionalization capabilities with magnetic nanoparticles. Hence, we developed air-filled MB stabilized by a protein-polymer complex of bovine serum albumin (BSA) and poly-L-arginine (pArg) of different molecular weights, showing that pArg of moderate molecular weight distribution (15-70 kDa) enabled MB with greater stability and acoustic response while preserving MB narrow diameters and the relative viability of THP-1 cells after 48 h of incubation. After MB functionalization with superparamagnetic iron oxide nanoparticles (SPION), magnetic moment values provided by single MB confirmed the sufficient SPION deposition onto BSA + pArg MB shells. During MB magnetic navigation in a blood vessel mimicking phantom with magnetic tweezers and in a Petri dish with adherent mouse renal carcinoma cell line, we demonstrated the effectiveness of magnetic MB localization in the desired area by magnetic field gradient. Magnetic MB co-localization with cells was further exploited for effective doxorubicin delivery with drug-loaded MB. Taken together, these findings open new avenues in control over albumin MB properties and magnetic navigation of SPION-loaded MB, which can envisage their applications in diagnostic and therapeutic needs.


Assuntos
Nanopartículas de Magnetita , Peptídeos , Camundongos , Animais , Nanopartículas de Magnetita/uso terapêutico , Microbolhas , Soroalbumina Bovina , Nanopartículas Magnéticas de Óxido de Ferro
3.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686471

RESUMO

The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as "gold standard" to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines. A crucial disadvantage of this method is the need for genetic modification of the primary culture, which casts doubt on the possibility of exploring the resulting clones in personalized medicine. Here we present a new approach for labeling and tracking hMSCs without genetic modification based on the application of cell-internalizable photoconvertible polyelectrolyte microcapsules (size: 2.6 ± 0.5 µm). These capsules were loaded with rhodamine B, and after thermal treatment, exhibited fluorescent photoconversion properties. Photoconvertible capsules demonstrated low cytotoxicity, did not affect the immunophenotype of the hMSCs, and maintained a high level of fluorescent signal for at least seven days. The developed approach was tested for cell tracking for four days and made it possible to trace the destiny of daughter cells without the need for additional labeling.


Assuntos
Células-Tronco Mesenquimais , Humanos , Cápsulas , Comunicação Celular , Rastreamento de Células , Células Clonais , Corantes
4.
Cytometry A ; 103(11): 868-880, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37455600

RESUMO

Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 µJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated. First, the PA responses of a melanoma cell suspension in vitro were measured to directly assess the efficiency of converting laser light into an acoustic signal. After it, the same dependence with the developed murine model based on constant rate melanoma cell injection into the animal blood flow was tested. Both in vivo and in vitro experiments show that signal generation efficiency increases with laser pulse energy above 15 µJ. Shorter pulses, especially 1 ns, provide more efficient signal generation as well as higher pulse rates. A higher pulse rate also provides more efficient signal generation, but also leads to overheating of the skin. The results show the limits where the photoacoustic flow cytometry system can be effectively used for the detection of circulating tumor cells in undiluted blood both for in vitro experiments and for in vivo murine models.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Camundongos , Animais , Citometria de Fluxo/métodos , Células Neoplásicas Circulantes/patologia , Lasers , Melanoma/patologia , Análise Espectral
5.
ACS Appl Mater Interfaces ; 15(21): 25354-25368, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204221

RESUMO

The intravesical instillation procedure is a proven method in modern urology for the treatment of bladder diseases. However, the low therapeutic efficiency and painfulness of the instillation procedure are significant limitations of this method. In the present study, we propose an approach to solving this problem by using microsized mucoadhesive macromolecular carriers based on whey protein isolate with the possibility of prolonged release of drugs as a drug delivery system. The optimal water-to-oil ratio (1:3) and whey protein isolate concentration (5%) were determined to obtain emulsion microgels with sufficient loading efficiency and mucoadhesive properties. The droplet diameter of emulsion microgels varies from 2.2 to 3.8 µm. The drug release kinetics from the emulsion microgels was evaluated. The release of the model dye in saline and artificial urine in vitro was observed for 96 h and reached up to 70% of loaded cargo for samples. The effect of emulsion microgels on the morphology and viability of two cell lines was observed: L929 mouse fibroblasts (normal adherent cells) and THP-1 human monocytes (cancer suspension cells). Developed emulsion microgels (5%, 1:3 and 1:5) showed sufficient mucoadhesion to a porcine bladder urothelium ex vivo. The biodistribution of emulsion microgels (5%, 1:3 and 1:5) in mice (n = 3) after intravesical (instillation) and systemic (intravenous) administration was assessed in vivo and ex vivo using near-infrared fluorescence live imaging for real time. It was demonstrated that intravesical instillation allows approximately 10 times more efficient accumulation of emulsion microgels in the mice urinary bladder in vivo 1 h after injection compared to systemic injection. The retention of the emulsion of mucoadhesive microgels in bladders after the intravesical instillation was observed for 24 h.


Assuntos
Microgéis , Neoplasias da Bexiga Urinária , Camundongos , Humanos , Animais , Suínos , Distribuição Tecidual , Urotélio/metabolismo , Emulsões/farmacologia , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/uso terapêutico , Sistemas de Liberação de Medicamentos
6.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769101

RESUMO

Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 µg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.


Assuntos
Glomerulonefrite , Camundongos , Animais , Etanercepte/uso terapêutico , Cápsulas , Glomerulonefrite/patologia , Rim/patologia , Glomérulos Renais/patologia
7.
ACS Appl Mater Interfaces ; 14(46): 51579-51592, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367877

RESUMO

A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 µm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 µg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 µm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Cápsulas , Macrófagos , Rastreamento de Células
8.
Pharmaceutics ; 14(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36297579

RESUMO

In a modern high-tech medicine, drug-eluting polymer coatings are actively used to solve a wide range of problems, including the prevention of post-surgery infection, inflammatory, restenosis, thrombosis and many other implant-associated complications. For major assumptions, the drug elution mechanism is considered mainly to be driven by the degradation of the polymer matrix. This process is very environmentally dependent, unpredictable and often leads to a non-linear drug release kinetic. In the present work, we demonstrate how the laser microperforation of cargo-loaded biodegradable films could be used as a tool to achieve zero-order release kinetics with different elution rates. The effects of the laser-induced hole's diameter (10, 18, 22, 24 µm) and their density (0, 1, 2, 4 per sample) on release kinetic are studied. The linear dynamics of elution was measured for all perforation densities. Release rates were estimated to be 0.018 ± 0.01 µg/day, 0.211 ± 0.08 µg/day, 0.681 ± 0.1 µg/day and 1.19 ± 0.12 µg/day for groups with 0, 1, 2, 4 microperforations, respectively. The role of biodegradation of the polymer matrix is reduced only to the decomposition of the film over time with no major influence on elution rates.

9.
Pharmaceutics ; 14(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297621

RESUMO

Bladder neck contracture (BNC) is a complication of the surgical treatment of benign and malignant prostate conditions and is associated with the partial or complete blockage of urination. Correction of this condition usually requires repeated surgical intervention, which does not guarantee recovery. Balloon dilation is a minimally invasive alternative to the surgical dissection of tissues; however, it significantly reduces the patient's quality of life. Additional local anti-inflammatory treatment may reduce the number of procedures requested and increase the attractiveness of this therapeutic strategy. Here, we report about an ultrathin biocompatible coating based on polylactic acid for Foley catheter balloons that can provide localized release of Prednol-L in the range of 56-99 µg in the BNC zone under conventional diagnostic ultrasound exposure. Note that the exposure of a transrectal probe with a conventional gray-scale ultrasound regimen with and without shear wave elastography (SWE) was comparably effective for Prednol-L release from the coating surface of a Foley catheter balloon. This strategy does not require additional manipulations by clinicians. The trigger for the drug release is the ultrasound exposure, which is applied for visualization of the balloon's location during the dilation process. In vivo experiments demonstrated the absence of negative effects of the usage of a coated Foley catheter for balloon dilation of the bladder neck and urethra.

10.
Colloids Surf B Biointerfaces ; 219: 112856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150237

RESUMO

Gas-liquid interfaces are reaching a particular interest in biomedicine. Microbubbles, ultrasound contrast agents of clinical routine, gained increasing attention as theranostic platforms due to the preserved acoustic response, drug conjugation capabilities, and applicability in biological barrier opening. A combination of microbubbles and photodynamic therapy agents can enhance the photodynamic effect, yet the evaluation of agent conjugation on microbubble stabilization and photodynamic effect is needed. Hence, two commercially available phthalocyanine photosensitizers - Holosens® (ZnPc) and Photosens® (AlPc) - were coupled with bovine serum albumin before microbubble synthesis. We demonstrated an albumin: phthalocyanine ratio of 1:1 and covalent attachment for ZnPc, a ratio of 1:3 with electrostatic binding for AlPc. Submicron-sized microbubbles (air- and SF6- filled) had a diameter of 0.8 µm. Albumin-phthalocyanine conjugates increased the microbubble concentration and shelf-life stability compared to plain ones. We hypothesized that phthalocyanine fluorescence lifetime values decreased after conjugation with microbubbles due to narrow distance between conjugates in the shell. Agents based on AlPc demonstrated higher photodynamic activity than agents based on ZnPc, and microbubbles preserved acoustic stability in human blood plasma. The biodistribution of AlPc-conjugated microbubbles was evaluated. We conclude that our microbubble platforms demonstrate greater photodynamic activity and prolonged stability for further applications in photodynamic therapy.

11.
ACS Appl Bio Mater ; 5(7): 3338-3348, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35791763

RESUMO

Microbubbles are routinely used ultrasound contrast agents in the clinic. While a soft protein shell is commercially preferable for imaging purposes, a rigid polymer shell demonstrates prolonged agent stability. Hence, combining polymers and proteins in one shell composition can advance microbubble properties. We formulated the hybrid "protein-copolymer" microbubble shell with a complex of bovine serum albumin and an amphiphilic copolymer of N-vinyl-2-pyrrolidone and acrylic acid. The resulting microbubbles demonstrated advanced physicochemical and acoustic properties, preserving in vitro biocompatibility. Adjusting the mass ratio between protein and copolymer allowed fine tuning of the microbubble properties of concentration (by two orders, up to 1010 MBs/mL), mean size (from 0.8 to 5 µm), and shell thickness (from 28 to 50 nm). In addition, the minimum air-liquid surface tension for the "protein-copolymer" solution enabled the highest bubble concentration. At the same time, a higher copolymer amount in the bubble shell increased the bubble size and tuned duration and intensity of the contrast during an ultrasound procedure. Demonstrated results exemplify the potential of the hybrid "protein-polymer" microbubble shell, allowing tailoring of microbubble properties for image-guided applications, combining advances of each material involved in the formulation.


Assuntos
Meios de Contraste , Microbolhas , Acrilatos , Resinas Acrílicas , Meios de Contraste/química , Polímeros/química , Povidona/análogos & derivados , Soroalbumina Bovina
12.
Pharmaceutics ; 14(6)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35745772

RESUMO

Infectious sequelae caused by surgery are a significant problem in modern medicine due to their reduction of therapeutic effectiveness and the patients' quality of life.Recently, new methods of local antimicrobial prophylaxis of postoperative sequelae have been actively developed. They allow high local concentrations of drugs to be achieved, increasing the antibiotic therapy's effectiveness while reducing its side effects. We have developed and characterized antimicrobial hydrogels based on an inexpensive and biocompatible natural substance from the dairy industry-whey protein isolate-as matrices for drug delivery. The release of cefazolin from the pores of hydrogel structures directly depends on the amount of the loaded drug and occurs in a prolonged manner for three days. Simultaneously with the antibiotic release, hydrogel swelling and partial degradation occurs. The WPI hydrogels absorb solvent, doubling in size in three days and retaining cefazolin throughout the duration of the experiment. The antimicrobial activity of cefazolin-loaded WPI hydrogels against Staphylococcus aureus growth is prolonged in comparison to that of the free cefazolin. The overall cytotoxic effect of cefazolin-containing WPI hydrogels is lower than that of free antibiotics. Thus, our work shows that antimicrobial WPI hydrogels are suitable candidates for local antibiotic therapy of infectious surgical sequelae.

13.
Pharmaceutics ; 14(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631642

RESUMO

The problem of reducing the side effects associated with drug distribution throughout the body in the treatment of various kidney diseases can be solved by effective targeted drug delivery. The method described herein involves injection of a drug encapsulated in polyelectrolyte capsules to achieve prolonged local release and long-term capillary retention of several hours while these capsules are administered via the renal artery. The proposed method does not imply disruption (puncture) of the renal artery or aorta and is suitable for long-term chronic experiments on mice. In this study, we compared how capsule size and dosage affect the target kidney blood flow. It has been established that an increase in the diameter of microcapsules by 29% (from 3.1 to 4.0 µm) requires a decrease in their concentration by at least 50% with the same suspension volume. The photoacoustic method, along with laser speckle contrast imaging, was shown to be useful for monitoring blood flow and selecting a safe dose. Capsules contribute to a longer retention of a macromolecular substance in the target kidney compared to its free form due to mechanical retention in capillaries and slow impregnation into surrounding tissues during the first 1-3 h, which was shown by fluorescence tomography and microscopy. At the same time, the ability of capillaries to perform almost complete "self-cleaning" from capsular shells during the first 12 h leads to the preservation of organ tissues in a normal state. The proposed strategy, which combines endovascular surgery and the injection of polymer microcapsules containing the active substance, can be successfully used to treat a wide range of nephropathies.

14.
ACS Appl Mater Interfaces ; 13(17): 19701-19709, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900738

RESUMO

In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.


Assuntos
Rastreamento de Células , Corantes Fluorescentes/química , Rodaminas/química , Animais , Carbono/química , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Imagem Óptica , Polímeros/química , Pontos Quânticos/química
15.
Biomed Opt Express ; 12(1): 380-394, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659080

RESUMO

Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing. Carriers for targeted drug delivery were used as model objects to test the device performance. They were injected into the bloodstream of the rat, detected fluorescently, and then captured from the bloodstream by a magnetic separator prior to filtration in organs. Carriers extracted from the whole blood were studied by a number of in vitro methods.

16.
Materials (Basel) ; 14(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562870

RESUMO

A novel versatile biocompatible hydrogel of whey protein isolate (WPI) and two types of tannic acid (TAs) was prepared by crosslinking of WPI with TAs in a one-step method at high temperature for 30 min. WPI is one common protein-based preparation which is used for hydrogel formation. The obtained WPI-TA hydrogels were in disc form and retained their integrity after sterilization by autoclaving. Two TA preparations of differing molecular weight and chemical structure were compared, namely a polygalloyl glucose-rich extract-ALSOK 02-and a polygalloyl quinic acid-rich extract-ALSOK 04. Hydrogel formation was observed for WPI solutions containing both preparations. The swelling characteristics of hydrogels were investigated at room temperature at different pH values, namely 5, 7, and 9. The swelling ability of hydrogels was independent of the chemical structure of the added TAs. A trend of decrease of mass increase (MI) in hydrogels was observed with an increase in the TA/WPI ratio compared to the control WPI hydrogel without TA. This dependence (a MI decrease-TA/WPI ratio) was observed for hydrogels with different types of TA both in neutral and acidic conditions (pH 5.7). Under alkaline conditions (pH 9), negative values of swelling were observed for all hydrogels with a high content of TAs and were accompanied by a significant release of TAs from the hydrogel network. Our studies have shown that the release of TA from hydrogels containing ALSOK04 is higher than from hydrogels containing ALSOK 02. Moreover, the addition of TAs, which display a strong anti-cancer effect, increases the cytotoxicity of WPI-TAs hydrogels against the Hep-2 human laryngeal squamous carcinoma (Hep-2 cells) cell line. Thus, WPI-TA hydrogels with prolonged drug release properties and cytotoxicity effect can be used as anti-cancer scaffolds.

17.
Pharmaceutics ; 14(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35056938

RESUMO

Bacterial infections are a severe medical problem, especially in traumatology, orthopedics, and surgery. The local use of antibiotics-elution materials has made it possible to increase the effectiveness of acute infections treatment. However, the infection prevention problem remains unresolved. Here, we demonstrate the fabrication of polylactic acid (PLA) "smart" films with microchamber arrays. These microchambers contain ceftriaxone as a payload in concentrations ranging from 12 ± 1 µg/cm2 to 38 ± 8 µg/cm2, depending on the patterned film thickness formed by the different PLA concentrations in chloroform. In addition, the release profile of the antibiotic can be prolonged up to 72 h in saline. At the same time, on the surface of agar plates, the antibiotic release time increases up to 96 h, which has been confirmed by the growth suppression of the Staphylococcus aureus bacteria. The efficient loading and optimal release rate are obtained for patterned films formed by the 1.5 wt % PLA in chloroform. The films produced from 1.5 and 2 wt % PLA solutions (thickness-0.42 ± 0.12 and 0.68 ± 0.16 µm, respectively) show an accelerated ceftriaxone release upon the trigger of the therapeutic ultrasound, which impacted as an expansion of the bacterial growth inhibition zone around the samples. Combining prolonged drug elution with the on-demand release ability of large cargo amount opens up new approaches for personalized and custom-tunable antibacterial therapy.

18.
J Biophotonics ; 13(11): e201960249, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32687263

RESUMO

Skin optical clearing effect ex vivo and in vivo was achieved by topical application of low molecular weight paramagnetic magnetic resonance contrast agents. This novel feature has not been explored before. By using collimated transmittance the diffusion coefficients of three clinically used magnetic resonance contrast agents, that is Gadovist, Magnevist and Dotarem as well as X-ray contrast agent Visipaque in mouse skin were determined ex vivo as (4.29 ± 0.39) × 10-7 cm2 /s, (5.00 ± 0.72) × 10-7 cm2 /s, (3.72 ± 0.67) × 10-7 cm2 /s and (1.64 ± 0.18) × 10-7 cm2 /s, respectively. The application of gadobutrol (Gadovist) resulted in efficient optical clearing that in general, was superior to other contrast agents tested and allowed to achieve: (a) more than 12-fold increase of transmittance over 10 minutes after application ex vivo; (b) markedly improved images of skin architecture obtained with optical coherence tomography; (c) an increase of the fluorescence intensity/background ratio in TagRFP-red fluorescent marker protein expressing tumor by five times after 15 minutes application into the skin in vivo. The obtained results have immediate implications for multimodality imaging because many contrast agents are capable of simultaneously enhancing the contrast of multiple imaging modalities.


Assuntos
Meios de Contraste , Pele , Animais , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Pele/diagnóstico por imagem , Tomografia de Coerência Óptica
19.
Cells ; 8(10)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581745

RESUMO

One of the greatest challenges in neuro-oncology is diagnosis and therapy (theranostics) of leptomeningeal metastasis (LM), brain metastasis (BM) and brain tumors (BT), which are associated with poor prognosis in patients. Retrospective analyses suggest that cerebrospinal fluid (CSF) is one of the promising diagnostic targets because CSF passes through central nervous system, harvests tumor-related markers from brain tissue and, then, delivers them into peripheral parts of the human body where CSF can be sampled using minimally invasive and routine clinical procedure. However, limited sensitivity of the established clinical diagnostic cytology in vitro and MRI in vivo together with minimal therapeutic options do not provide patient care at early, potentially treatable, stages of LM, BM and BT. Novel technologies are in demand. This review outlines the advantages, limitations and clinical utility of emerging liquid biopsy in vitro and photoacoustic flow cytometry (PAFC) in vivo for assessment of CSF markers including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, exosomes and emboli. The integration of in vitro and in vivo methods, PAFC-guided theranostics of single CTCs and targeted drug delivery are discussed as future perspectives.


Assuntos
Biomarcadores Tumorais/líquido cefalorraquidiano , Neoplasias Encefálicas , Neoplasias Meníngeas , Células Neoplásicas Circulantes/patologia , Nanomedicina Teranóstica/métodos , Animais , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Contagem de Células/métodos , Citometria de Fluxo/métodos , Humanos , Biópsia Líquida , Neoplasias Meníngeas/líquido cefalorraquidiano , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/terapia , Camundongos
20.
Biomater Sci ; 7(6): 2358-2371, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30916673

RESUMO

Polyelectrolyte multilayer (PEM) microchambers can provide a versatile cargo delivery system enabling rapid, site-specific drug release on demand. However, experimental evidence for their potential benefits in live human cells is scarce. Equally, practical applications often require substance delivery that is geometrically constrained and highly localized. Here, we establish human-cell biocompatibility and on-demand cargo release properties of the PEM or polylactic acid (PLA)-based microchamber arrays fabricated on a patterned film base. We grow human N2A cells (a neuroblastoma cell line widely used for studies of neurotoxicity) on the surface of the patterned microchamber arrays loaded with either a fluorescent indicator or the ubiquitous excitatory neurotransmitter glutamate. The differentiating human N2A cells show no detrimental effects on viability when growing on either PEM@PLA or PLA-based arrays for up to ten days in vitro. Firstly, we use two-photon (2P) excitation with femtosecond laser pulses to open individual microchambers in a controlled way while monitoring release and diffusion of the fluorescent cargo (rhodamine or FITC fluorescent dye). Secondly, we document the increases in intracellular Ca2+ in local N2A cells in response to the laser-triggered glutamate release from individual microchambers. The functional cell response is site-specific and reproducible on demand and could be replicated by applying glutamate to the cells using a pressurised micropipette. Time-resolved fluorescence imaging confirms the physiological range of the glutamate-evoked intracellular Ca2+ dynamics in the differentiating N2A cells. Our data indicate that the nano-engineering design of the fabricated PEM or PLA-based patterned microchamber arrays could provide a biologically safe and efficient tool for targeted, geometrically constrained drug delivery.


Assuntos
Microtecnologia/instrumentação , Neurônios/citologia , Polieletrólitos/química , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Humanos , Espaço Intracelular/metabolismo , Lasers , Poliésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA