Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vasc Access ; : 11297298221085458, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751379

RESUMO

The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.

2.
Am J Respir Cell Mol Biol ; 66(6): 623-637, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35286819

RESUMO

Patients with chronic obstructive pulmonary disease (COPD)-pulmonary emphysema often develop locomotor muscle dysfunction, which entails reduced muscle mass and force-generation capacity and is associated with worse outcomes, including higher mortality. Myogenesis contributes to adult muscle integrity during injury-repair cycles. Injurious events crucially occur in the skeletal muscles of patients with COPD in the setting of exacerbations and infections, which lead to acute decompensations for limited periods of time, after which patients typically fail to recover the baseline status they had before the acute event. Autophagy, which is dysregulated in muscles from patients with COPD, is a key regulator of muscle stem-satellite- cells activation and myogenesis, yet very little research has so far mechanistically investigated the role of autophagy dysregulation in COPD muscles. Using a genetically inducible interleukin-13-driven pulmonary emphysema model leading to muscle dysfunction, and confirmed with a second genetic animal model, we found a significant myogenic dysfunction associated with the reduced proliferative capacity of satellite cells. Transplantation experiments followed by lineage tracing suggest that an intrinsic defect in satellite cells, and not in the COPD environment, plays a dominant role in the observed myogenic dysfunction. RNA sequencing analysis and direct observation of COPD mice satellite cells suggest dysregulated autophagy. Moreover, while autophagy flux experiments with bafilomycin demonstrated deacceleration of autophagosome turnover in COPD mice satellite cells, spermidine-induced autophagy stimulation leads to a higher replication rate and myogenesis in these animals. Our data suggest that pulmonary emphysema causes disrupted myogenesis, which could be improved with stimulation of autophagy and satellite cells activation, leading to an attenuated muscle dysfunction.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Autofagia , Humanos , Camundongos , Desenvolvimento Muscular , Músculo Esquelético , Enfisema Pulmonar/etiologia
3.
Cells ; 10(9)2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34572045

RESUMO

Receptor interacting protein kinase 3 (RIPK3)-mediated smooth muscle cell (SMC) necroptosis has been shown to contribute to the pathogenesis of abdominal aortic aneurysms (AAAs). However, the signaling steps downstream from RIPK3 during SMC necroptosis remain unknown. In this study, the roles of mixed lineage kinase domain-like pseudokinase (MLKL) and calcium/calmodulin-dependent protein kinase II (CaMKII) in SMC necroptosis were investigated. We found that both MLKL and CaMKII were phosphorylated in SMCs in a murine CaCl2-driven model of AAA and that Ripk3 deficiency reduced the phosphorylation of MLKL and CaMKII. In vitro, mouse aortic SMCs were treated with tumor necrosis factor α (TNFα) plus Z-VAD-FMK (zVAD) to induce necroptosis. Our data showed that both MLKL and CaMKII were phosphorylated after TNFα plus zVAD treatment in a time-dependent manner. SiRNA silencing of Mlkl-diminished cell death and administration of the CaMKII inhibitor myristoylated autocamtide-2-related inhibitory peptide (Myr-AIP) or siRNAs against Camk2d partially inhibited necroptosis. Moreover, knocking down Mlkl decreased CaMKII phosphorylation, but silencing Camk2d did not affect phosphorylation, oligomerization, or trafficking of MLKL. Together, our results indicate that both MLKL and CaMKII are involved in RIPK3-mediated SMC necroptosis, and that MLKL is likely upstream of CaMKII in this process.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos de Músculo Liso/patologia , Necrose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Cloreto de Cálcio/toxicidade , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
4.
Mol Metab ; 53: 101300, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303021

RESUMO

OBJECTIVE: Obesity-related adipose tissue dysfunction has been linked to the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Impaired calcium homeostasis is associated with altered adipose tissue metabolism; however, the molecular mechanisms that link disrupted calcium signaling to metabolic regulation are largely unknown. Here, we investigated the contribution of a calcium-sensing enzyme, calcium/calmodulin-dependent protein kinase II (CAMK2), to adipocyte function, obesity-associated insulin resistance, and glucose intolerance. METHODS: To determine the impact of adipocyte CAMK2 deficiency on metabolic regulation, we generated a conditional knockout mouse model and acutely deleted CAMK2 in mature adipocytes. We further used in vitro differentiated adipocytes to dissect the mechanisms by which CAMK2 regulates adipocyte function. RESULTS: CAMK2 activity was increased in obese adipose tissue, and depletion of adipocyte CAMK2 in adult mice improved glucose intolerance and insulin resistance without an effect on body weight. Mechanistically, we found that activation of CAMK2 disrupted adipocyte insulin signaling and lowered the amount of insulin receptor. Further, our results revealed that CAMK2 contributed to adipocyte lipolysis, tumor necrosis factor alpha (TNFα)-induced inflammation, and insulin resistance. CONCLUSIONS: These results identify a new link between adipocyte CAMK2 activity, metabolic regulation, and whole-body glucose homeostasis.


Assuntos
Adipócitos/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
5.
FASEB J ; 35(4): e21437, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749880

RESUMO

Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous serine threonine kinase with established roles in physiological and pathophysiological vascular remodeling. Based on our previous study demonstrating that CaMKIIδ promotes thrombin-induced endothelial permeability and recent reports that CaMKII may contribute to inflammatory remodeling in the heart, we investigated CaMKIIδ-dependent regulation of endothelial function downstream of an interleukin-6 (IL-6)/JAK/STAT3 signaling axis. Upon treatment with IL-6 and its soluble receptor (sIL-6r), CaMKIIδ expression is significantly induced in HUVEC. Using pharmacological inhibitors of JAK and siRNA targeting STAT3, we demonstrated that activation of STAT3 is sufficient to induce CaMKIIδ expression. Under these conditions, rather than promoting IL-6-induced permeability, we found that CaMKIIδ promotes endothelial cell migration as measured by live cell imaging of scratch wound closure and single-cell motility analysis. In a similar manner, endothelial cell proliferation was attenuated upon knockdown of CaMKIIδ as determined by growth curves, cell cycle analysis, and capacitance of cell-covered electrodes as measured by ECIS. Using inducible endothelial-specific STAT3 knockout mice, we demonstrate that STAT3 signaling promotes developmental angiogenesis in the neonatal mouse retina assessed at postnatal day 6. CaMKIIδ expression in retinal endothelium was attenuated in these animals as measured by qPCR. STAT3's effects on angiogenesis were phenocopied by the endothelial-specific knockout of CaMKIIδ, with significantly reduced vascular outgrowth and number of junctions in the developing P6 retina. For the first time, we demonstrate that transcriptional regulation of CaMKIIδ by STAT3 promotes endothelial motility, proliferation, and in vivo angiogenesis.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Vasos Retinianos/fisiologia , Fator de Transcrição STAT3/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Movimento Celular , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/genética , Janus Quinases/genética , Camundongos , Neovascularização Fisiológica , Isoformas de Proteínas , Interferência de RNA , Retina , Fator de Transcrição STAT3/genética , Regulação para Cima
6.
Redox Biol ; 22: 101137, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771750

RESUMO

Injury-induced stenosis is a serious vascular complication. We previously reported that p38α (MAPK14), a redox-regulated p38MAPK family member was a negative regulator of the VSMC contractile phenotype in vitro. Here we evaluated the function of VSMC-MAPK14 in vivo in injury-induced neointima hyperplasia and the underlying mechanism using an inducible SMC-MAPK14 knockout mouse line (iSMC-MAPK14-/-). We show that MAPK14 expression and activity were induced in VSMCs after carotid artery ligation injury in mice and ex vivo cultured human saphenous veins. While the vasculature from iSMC-MAPK14-/- mice was indistinguishable from wildtype littermate controls at baseline, these mice exhibited reduced neointima formation following carotid artery ligation injury. Concomitantly, there was an increased VSMC contractile protein expression in the injured vessels and a decrease in proliferating cells. Blockade of MAPK14 through a selective inhibitor suppressed, while activation of MAPK14 by forced expression of an upstream MAPK14 kinase promoted VSMC proliferation in cultured VSMCs. Genome wide RNA array combined with VSMC lineage tracing studies uncovered that vascular injury evoked robust inflammatory responses including the activation of proinflammatory gene expression and accumulation of CD45 positive inflammatory cells, which were attenuated in iSMC-MAPK14-/- mice. Using multiple pharmacological and molecular approaches to manipulate MAPK14 pathway, we further confirmed the critical role of MAPK14 in activating proinflammatory gene expression in cultured VSMCs, which occurs in a p65/NFkB-dependent pathway. Finally, we found that NOX4 contributes to MAPK14 suppression of the VSMC contractile phenotype. Our results revealed that VSMC-MAPK14 is required for injury-induced neointima formation, likely through suppressing VSMC differentiation and promoting VSMC proliferation and inflammation. Our study will provide mechanistic insights into therapeutic strategies for mitigation of vascular stenosis.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Animais , Biomarcadores , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Diferenciação Celular , Proliferação de Células , Imunofluorescência , Expressão Gênica , Humanos , Hiperplasia , Imuno-Histoquímica , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/genética , Miócitos de Músculo Liso/citologia , NADPH Oxidase 4/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição RelA/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 37(10): 1944-1955, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798140

RESUMO

OBJECTIVE: The role of hemoglobin and myoglobin in the cardiovascular system is well established, yet other globins in this context are poorly characterized. Here, we examined the expression and function of cytoglobin (CYGB) during vascular injury. APPROACH AND RESULTS: We characterized CYGB content in intact vessels and primary vascular smooth muscle (VSM) cells and used 2 different vascular injury models to examine the functional significance of CYGB in vivo. We found that CYGB was strongly expressed in medial arterial VSM and human veins. In vitro and in vivo studies indicated that CYGB was lost after VSM cell dedifferentiation. In the rat balloon angioplasty model, site-targeted delivery of adenovirus encoding shRNA specific for CYGB prevented its reexpression and decreased neointima formation. Similarly, 4 weeks after complete ligation of the left common carotid, Cygb knockout mice displayed little to no evidence of neointimal hyperplasia in contrast to their wild-type littermates. Mechanistic studies in the rat indicated that this was primarily associated with increased medial cell loss, terminal uridine nick-end labeling staining, and caspase-3 activation, all indicative of prolonged apoptosis. In vitro, CYGB could be reexpressed after VSM stimulation with cytokines and hypoxia and loss of CYGB sensitized human and rat aortic VSM cells to apoptosis. This was reversed after antioxidant treatment or NOS2 (nitric oxide synthase 2) inhibition. CONCLUSIONS: These results indicate that CYGB is expressed in vessels primarily in differentiated medial VSM cells where it regulates neointima formation and inhibits apoptosis after injury.


Assuntos
Apoptose , Globinas/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiopatologia , Remodelação Vascular/fisiologia , Animais , Caspase 3/metabolismo , Diferenciação Celular , Citoglobina , Regulação para Baixo , Ativação Enzimática , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Neointima/fisiopatologia , Óxido Nítrico Sintase Tipo II/toxicidade , Oxirredução , Ratos
8.
Development ; 144(9): 1635-1647, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28465335

RESUMO

The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation.


Assuntos
Membrana Celular/metabolismo , Pericárdio/citologia , Pericárdio/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Polaridade Celular , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Espaço Intracelular/metabolismo , Camundongos Knockout , Modelos Biológicos , Miocárdio/citologia , Miocárdio/metabolismo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
J Am Heart Assoc ; 6(4)2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28360226

RESUMO

BACKGROUND: The arteriovenous fistula (AVF) is the preferred form of hemodialysis access for patients with chronic kidney disease. However, AVFs are associated with significant problems including high incidence of both early and late failures, usually attributed to inadequate venous arterialization and neointimal hyperplasia, respectively. Understanding the cellular basis of venous remodeling in the setting of AVF could provide targets for improving AVF patency rates. METHODS AND RESULTS: A novel vascular smooth muscle cell (VSMC) lineage tracing reporter mouse, Myh11-Cre/ERT2-mTmG, was used to track mature VSMCs in a clinically relevant AVF mouse model created by a jugular vein branch end to carotid artery side anastomosis. Prior to AVF surgery, differentiated medial layer VSMCs were labeled with membrane green fluorescent protein (GFP) following tamoxifen induction. Four weeks after AVF surgery, we observed medial VSMC layer thickening in the middle region of the arterialized vein branch. This thickened medial VSMC layer was solely composed of differentiated VSMCs that were GFP+/MYH11+/Ki67-. Extensive neointimal hyperplasia occurred in the AVF region proximal to the anastomosis site. Dedifferentiated VSMCs (GFP+/MYH11-) were a major cellular component of the neointima. Examination of failed human AVF samples revealed that the processes of VSMC phenotypic modulation and intimal hyperplasia, as well as medial VSMC layer thickening, also occurred in human AVFs. CONCLUSIONS: We demonstrated a dual function for mature VSMCs in AVF remodeling, with differentiated VSMCs contributing to medial wall thickening towards venous maturation and dedifferentiated VSMCs contributing to neointimal hyperplasia. These results provide valuable insights into the mechanisms underlying venous adaptations during AVF remodeling.


Assuntos
Anastomose Cirúrgica , Artérias Carótidas/cirurgia , Veias Jugulares/cirurgia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/patologia , Remodelação Vascular , Animais , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Linhagem da Célula , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Veias Jugulares/metabolismo , Veias Jugulares/patologia , Antígeno Ki-67/metabolismo , Falência Renal Crônica/terapia , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neointima/metabolismo , Diálise Renal
10.
FASEB J ; 30(3): 1051-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26567004

RESUMO

Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células/fisiologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Remodelação Vascular/fisiologia , Animais , Apoptose/fisiologia , Biomarcadores/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Masculino , Camundongos , Camundongos Knockout , Neointima/metabolismo , Neointima/patologia , Ratos , Ratos Sprague-Dawley
11.
Am J Physiol Cell Physiol ; 306(8): C753-61, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24477238

RESUMO

c-Abl is a nonreceptor protein tyrosine kinase that has a role in regulating smooth muscle cell proliferation and contraction. The role of c-Abl in smooth muscle cell migration has not been investigated. In the present study, c-Abl was found in the leading edge of smooth muscle cells. Knockdown of c-Abl by RNA interference attenuated smooth muscle cell motility as evidenced by time-lapse microscopy. Furthermore, the actin-associated proteins cortactin and profilin-1 (Pfn-1) have been implicated in cell migration. In this study, cell adhesion induced cortactin phosphorylation at Tyr-421, an indication of cortactin activation. Phospho-cortactin and Pfn-1 were also found in the cell edge. Pfn-1 directly interacted with cortactin in vitro. Silencing of c-Abl attenuated adhesion-induced cortactin phosphorylation and Pfn-1 localization in the cell edge. To assess the role of cortactin/Pfn-1 coupling, we developed a cell-permeable peptide. Treatment with the peptide inhibited the interaction of cortactin with Pfn-1 without affecting cortactin phosphorylation. Moreover, treatment with the peptide impaired the recruitment of Pfn-1 to the leading edge and cell migration. Finally, ß1-integrin was required for the recruitment of c-Abl to the cell edge. Inhibition of actin dynamics impaired the spatial distribution of c-Abl. These results suggest that ß1-integrin may recruit c-Abl to the leading cell edge, which may regulate cortactin phosphorylation in response to cell adhesion. Phosphorylated cortactin may facilitate the recruitment of Pfn-1 to the cell edge, which promotes localized actin polymerization, leading edge formation, and cell movement. Conversely, actin dynamics may strengthen the recruitment of c-Abl to the leading edge.


Assuntos
Movimento Celular/fisiologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/fisiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Animais , Far-Western Blotting , Adesão Celular , Células Cultivadas , Cortactina/genética , Cortactina/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Fosforilação , Profilinas/genética , Profilinas/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Interferência de RNA , Transdução Genética
12.
J Biol Chem ; 288(41): 29703-12, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24003228

RESUMO

In vascular smooth muscle (VSM) cells, Ca(2+)/calmodulin-dependent protein kinase IIδ2 (CaMKIIδ2) activates non-receptor tyrosine kinases and EGF receptor, with a Src family kinase as a required intermediate. siRNA-mediated suppression of Fyn, a Src family kinase, inhibited VSM cell motility. Simultaneous suppression of both Fyn and CaMKIIδ2 was non-additive, suggesting coordinated regulation of cell motility. Confocal immunofluorescence microscopy indicated that CaMKIIδ2 and Fyn selectively (compared with Src) co-localized with the Golgi in quiescent cultured VSM cells. Stimulation with PDGF resulted in a rapid (<5 min) partial redistribution and co-localization of both kinases in peripheral membrane regions. Furthermore, CaMKIIδ2 and Fyn selectively (compared with Src) co-immunoprecipitated, suggesting a physical interaction in a signaling complex. Stimulation of VSM cells with ionomycin, a calcium ionophore, resulted in activation of CaMKIIδ2 and Fyn and disruption of the complex. Pretreatment with KN-93, a pharmacological inhibitor of CaMKII, prevented activation-dependent disruption of CaMKIIδ2 and Fyn, implicating CaMKIIδ2 as an upstream mediator of Fyn. Overexpression of constitutively active CaMKII resulted in the dephosphorylation of Fyn at Tyr-527, which is required for Fyn activation. Taken together, these data demonstrate a dynamic interaction between CaMKIIδ2 and Fyn in VSM cells and indicate a mechanism by which CaMKIIδ2 and Fyn may coordinately regulate VSM cell motility.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Movimento Celular/fisiologia , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Immunoblotting , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Músculo Liso Vascular/citologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fyn/genética , Pirimidinas/farmacologia , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética , Quinases da Família src/metabolismo
13.
Cell Metab ; 15(5): 739-51, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22503562

RESUMO

Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis.


Assuntos
Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Jejum/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Núcleo Celular/metabolismo , AMP Cíclico/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Glucagon/metabolismo , Gluconeogênese , Glicogenólise , Hepatócitos/metabolismo , Homeostase , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Antioxid Redox Signal ; 12(5): 657-74, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19719386

RESUMO

Signaling cascades initiated or regulated by calcium (Ca(2+)), reactive oxygen (ROS), and nitrogen (RNS) species are essential to diverse physiological and pathological processes in vascular smooth muscle. Stimuli-induced changes in intracellular Ca(2+) regulate the activity of primary ROS and RNS, producing enzymes including NADPH oxidases (Nox) and nitric oxide synthases (NOS). At the same time, alteration in intracellular ROS and RNS production reciprocates through redox-based post-translational modifications altering Ca(2+) signaling networks. These may include Ca(2+) pumps such as sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase (SERCA), voltage-gated channels, transient receptor potential canonical (TRPC), melastatin2 (TRPM2), and ankyrin1 (TRPA1) channels, store operated Ca(2+) channels such as Orai1/stromal interaction molecule 1 (STIM1), and Ca(2+) effectors such as Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In this review, we summarize and highlight current experimental evidence supporting the idea that cross-talk between Ca(2+) and ROS/RNS may represent a well-integrated signaling network in vascular smooth muscle.


Assuntos
Cálcio/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Canais Iônicos/metabolismo , Contração Muscular/fisiologia , Músculo Liso Vascular/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxirredução , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
15.
Pflugers Arch ; 456(5): 769-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18365243

RESUMO

Calcium (Ca(2+)) is a highly versatile second messenger that controls vascular smooth muscle cell (VSMC) contraction, proliferation, and migration. By means of Ca(2+) permeable channels, Ca(2+) pumps and channels conducting other ions such as potassium and chloride, VSMC keep intracellular Ca(2+) levels under tight control. In healthy quiescent contractile VSMC, two important components of the Ca(2+) signaling pathways that regulate VSMC contraction are the plasma membrane voltage-operated Ca(2+) channel of the high voltage-activated type (L-type) and the sarcoplasmic reticulum Ca(2+) release channel, Ryanodine Receptor (RyR). Injury to the vessel wall is accompanied by VSMC phenotype switch from a contractile quiescent to a proliferative motile phenotype (synthetic phenotype) and by alteration of many components of VSMC Ca(2+) signaling pathways. Specifically, this switch that culminates in a VSMC phenotype reminiscent of a non-excitable cell is characterized by loss of L-type channels expression and increased expression of the low voltage-activated (T-type) Ca(2+) channels and the canonical transient receptor potential (TRPC) channels. The expression levels of intracellular Ca(2+) release channels, pumps and Ca(2+)-activated proteins are also altered: the proliferative VSMC lose the RyR3 and the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase isoform 2a pump and reciprocally regulate isoforms of the ca(2+)/calmodulin-dependent protein kinase II. This review focuses on the changes in expression of Ca(2+) signaling proteins associated with VSMC proliferation both in vitro and in vivo. The physiological implications of the altered expression of these Ca(2+) signaling molecules, their contribution to VSMC dysfunction during vascular disease and their potential as targets for drug therapy will be discussed.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Músculo Liso/fisiologia , Miócitos de Músculo Liso/fisiologia , Fenótipo , Doenças Vasculares/fisiopatologia , Animais , Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Contração Muscular/fisiologia , Músculo Liso/citologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Canais de Potássio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Canais de Cátion TRPC/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 28(3): 441-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18096823

RESUMO

OBJECTIVE: The purpose of this study was to test the function of the calcium/calmodulin-dependent protein kinase II delta2 isoform (CaMKIIdelta2) in regulating vascular smooth muscle (VSM) cell proliferation and migration in response to vascular injury. METHODS AND RESULTS: CaMKII isoform content was assessed in rat carotid arteries after balloon angioplasty-induced injury by Western blotting with isoform specific antibodies. Within 3 days after injury, a significant increase in CaMKIIdelta2 and decrease in CaMKIIgamma isoform content was observed in both medial smooth muscle and adventitial fibroblasts. Neointimal VSM cells expressed primarily the delta2 isoform. Incubation of the injured vessel with adenovirus encoding siRNA targeting CaMKIIdelta isoforms prevented upregulation of the delta2 isoform in the media and adventitia; inhibited cell proliferation assessed by PCNA expression in both layers and markedly inhibited neointima formation and adventitial thickening. CONCLUSIONS: CaMKIIdelta2 is specifically induced in VSM and adventitial fibroblasts during the response of an artery to injury and is a positive regulator of proliferation and migration in the vessel wall contributing to neointima formation and vascular remodeling. This provides a potential mechanism for Ca2+-dependent regulation of VSM and myofibroblast proliferation and migration in response to vascular injury or disease.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Lesões das Artérias Carótidas/enzimologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Túnica Íntima/enzimologia , Adenoviridae , Angioplastia com Balão , Animais , Biomarcadores/metabolismo , Lesões das Artérias Carótidas/patologia , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Imuno-Histoquímica , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Túnica Íntima/patologia , Regulação para Cima
17.
J Cereb Blood Flow Metab ; 28(2): 377-86, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17684520

RESUMO

Cerebral vascular dysfunction and associated diseases often occur in type-1 diabetes, but the underlying mechanisms are largely unknown. In this study, we sought to determine whether big-conductance, Ca(2+)-activated K(+) (BK) channels were impaired in vascular (cerebral artery) smooth muscle cells (CASMCs) from streptozotocin-induced type-1 diabetic mice using patch clamp, molecular biologic, and genetic approaches. Our data indicate that the frequency and amplitude of spontaneous transient outward currents (STOCs) are significantly decreased, whereas the activity of spontaneous Ca(2+) sparks is increased, in diabetic CASMCs. The sensitivity of BK channels to voltage, Ca(2+), and the specific inhibitor iberiotoxin are all reduced in diabetic myocytes. Diabetic mice show increased myogenic tone and decreased contraction in response to iberiotoxin in cerebral arteries and elevated blood pressure. The expression of the BK channel beta1, but not alpha-subunit protein, is markedly decreased in diabetic cerebral arteries. Diabetic impairment of BK channel activity is lost in CASMCs from BK channel beta1-subunit gene deletion mice. In conclusion, the BK channel beta1-subunit is impaired in type-1 diabetic vascular SMCs, resulting in increased vasoconstriction and elevated blood pressure, thereby contributing to vascular diseases in type-1 diabetes.


Assuntos
Artérias Cerebrais/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Animais , Pressão Sanguínea/fisiologia , Western Blotting , Sinalização do Cálcio/fisiologia , Separação Celular , Eletrofisiologia , Masculino , Camundongos , Contração Muscular/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Vasoconstrição/fisiologia
18.
Am J Physiol Heart Circ Physiol ; 292(6): H2634-42, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17293490

RESUMO

Nitric oxide synthase (NOS) expression is regulated transcriptionally in response to cytokine induction and posttranslationally by palmitoylation and trafficking into perinuclear aggresome-like structures. We investigated the effects of multifunctional calcium/calmodulin-dependent protein kinase II protein kinase (CaMKII) on inducible NOS (iNOS) trafficking in cultured rat aortic vascular smooth muscle cells (VSMCs). Immunofluorescence and confocal microscopy demonstrated colocalization of iNOS and CaMKIIdelta(2) with a perinuclear distribution and concentration in aggresome-like structures identified by colocalization with gamma-tubulin. Furthermore, CaMKIIdelta(2) coimmunoprecipitated with iNOS in a CaMKII activity-dependent manner. Addition of Ca(2+)-mobilizing stimuli expected to activate CaMKII; a purinergic agonist (UTP) or calcium ionophore (ionomycin) caused a general redistribution of iNOS from cytosolic to membrane and nuclear fractions. Similarly, adenoviral expression of a constitutively active CaMKIIdelta(2) mutant altered iNOS localization, shifting iNOS from the cytosolic fraction. Suppression of CaMKIIdelta(2) using an adenovirus expressing a short hairpin, small interfering RNA increased nuclear iNOS localization in resting cells but inhibited ionomycin-induced translocation of iNOS to the nucleus. Following addition of these chronic and acute CaMKII modulators, there were fewer aggresome-like structures containing iNOS. All of the treatments that chronically affected CaMKII activity or expression significantly inhibited iNOS-specific activity following cytokine induction. The results suggest that CaMKIIdelta(2) may be an important regulator of iNOS trafficking and activity in VSMCs.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Citocinas/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Animais , Aorta Torácica/citologia , Aorta Torácica/metabolismo , Benzilaminas/farmacologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Membrana Celular/enzimologia , Núcleo Celular/enzimologia , Células Cultivadas , Citoplasma/enzimologia , Indução Enzimática , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Ionomicina/farmacologia , Ionóforos/farmacologia , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Uridina Trifosfato/metabolismo
19.
Am J Physiol Cell Physiol ; 292(6): C2276-87, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17267544

RESUMO

There is accumulating evidence that Ca(2+)-dependent signaling pathways regulate proliferation and migration of vascular smooth muscle (VSM) cells, contributing to the intimal accumulation of VSM that is a hallmark of many vascular diseases. In this study we investigated the role of the multifunctional serine/threonine kinase, calmodulin (CaM)-dependent protein kinase II (CaMKII), as a mediator of Ca(2+) signals regulating VSM cell proliferation. Differentiated VSM cells acutely isolated from rat aortic media express primarily CaMKIIgamma gene products, whereas passaged primary cultures of de-differentiated VSM cells express primarily CaMKIIdelta(2), a splice variant of the delta gene. Experiments examining the time course of CaMKII isoform modulation revealed the process was rapid in onset following initial dispersion and primary culture of aortic VSM with a significant increase in CaMKIIdelta(2) protein and a significant decrease in CaMKIIgamma protein within 30 h, coinciding with the onset of DNA synthesis and cell proliferation. Attenuating the initial upregulation of CaMKIIdelta(2) in primary cultured cells using small-interfering RNA (siRNA) resulted in decreased serum-stimulated DNA synthesis and cell proliferation in primary culture. In passaged VSM cells, suppression of CaMKIIdelta(2) activity by overexpression of a kinase-negative mutant, or suppression of endogenous CaMKII content using multiple siRNAs, significantly attenuated serum-stimulated DNA synthesis and cell proliferation. Cell cycle analysis following either inhibitory approach indicated decreased proportion of cells in G1, an increase in proportion of cells in G2/M, and an increase in polyploidy, corresponding with accumulation of multinucleated cells. These results indicate that CaMKIIdelta(2) is specifically induced during modulation of VSM cells to the synthetic phenotypic and is a positive regulator of serum-stimulated proliferation.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/enzimologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proliferação de Células , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Ratos , Ratos Sprague-Dawley
20.
J Biol Chem ; 281(45): 34716-24, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16990256

RESUMO

Phosphorylation and spatial reorganization of the vimentin network have been implicated in mediating smooth muscle contraction, cell migration, and mitosis. In this study, stimulation of cultured smooth muscle cells with 5-hydroxytryptamine (5-HT) induced PAK1 phosphorylation at Thr-423 (an indication of p21-activated kinase (PAK) activation). Treatment with PAK led to disassembly of wild-type (but not mutant S56A) vimentin filaments as assessed by an in vitro filament assembly assay. Furthermore, stimulation with 5-HT resulted in the dissociation of Crk-associated substrate (CAS; an adapter protein associated with smooth muscle force development) from cytoskeletal vimentin. Expression of mutant S56A vimentin in cells inhibited the increase in phosphorylation at Ser-56 and in the ratios of soluble to insoluble vimentin (an index of vimentin disassembly) and the dissociation of CAS from cytoskeletal vimentin in response to 5-HT activation compared with cells expressing wild-type vimentin. Because CAS may be involved in PAK activation, PAK phosphorylation was evaluated in cells expressing the S56A mutant. Expression of mutant S56A vimentin depressed PAK phosphorylation at Thr-423 induced by 5-HT. Expression of the S56A mutant also inhibited the spatial reorientation of vimentin filaments in cells in response to 5-HT stimulation. Our results suggest that vimentin phosphorylation at Ser-56 may inversely regulate PAK activation possibly via the increase in the amount of soluble CAS upon agonist stimulation of smooth muscle cells. Additionally, vimentin phosphorylation at this position is critical for vimentin filament spatial rearrangement elicited by agonists.


Assuntos
Citoesqueleto , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Vimentina/metabolismo , Actinas/metabolismo , Animais , Proteína Substrato Associada a Crk/metabolismo , Cães , Regulação Enzimológica da Expressão Gênica , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Serotonina/farmacologia , Serotoninérgicos/farmacologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Vimentina/genética , Quinases Ativadas por p21
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA