Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014178

RESUMO

Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).

2.
Front Cell Dev Biol ; 11: 1325291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169927

RESUMO

Hematopoietic stem cell (HSC) transplantation-based treatments are in different phases of clinical development, ranging from current therapies to a promise in the repair and regeneration of diseased tissues and organs. Mesenchymal stromal/stem cells (MSCs), which are fibroblast-like heterogeneous progenitors with multilineage differentiation (osteogenic, chondrogenic, and adipogenic) and self-renewal potential, and exist in the bone marrow (BM), adipose, and synovium, among other tissues, represent one of the most widely used sources of stem cells in regenerative medicine. MSCs derived from bone marrow (BM-MSCs) exhibit a variety of traits, including the potential to drive HSC fate and anti-inflammatory and immunosuppressive capabilities via paracrine activities and interactions with the innate and adaptive immune systems. The role of BM-MSC-derived adipocytes is more controversial and may act as positive or negative regulators of benign or malignant hematopoiesis based on their anatomical location and functional crosstalk with surrounding cells in the BM microenvironment. This review highlights the most recent clinical and pre-clinical findings on how BM-MSCs interact with the surrounding HSCs, progenitors, and immune cells, and address some recent insights on the mechanisms that mediate MSCs and adipocyte metabolic control through a metabolic crosstalk between BM microenvironment cells and intercellular mitochondrial transfer in normal and malignant hematopoiesis.

3.
Cureus ; 14(7): e27166, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36017271

RESUMO

BACKGROUND: Spinal anesthetic-induced hypotension is the most worrisome complication for patients undergoing cesarean section under spinal anesthesia. The present study compares norepinephrine and phenylephrine bolus for the treatment of hypotension during spinal anesthesia for cesarean section. METHODS: One hundred twenty- six women aged between 22 and 40 years with singleton pregnancy classified to the American Society of Anesthesiologists (ASA) physical class I and II posted for elective cesarean section under spinal anesthesia were randomly divided into two groups of 63 each. Group I patients received phenylephrine 50 mcg (microgram) as an intravenous bolus, and Group II received 4 mcg of norepinephrine as an intravenous bolus to treat spinal hypotension. RESULTS: On comparing the demographic data of the patients in terms of age, weight, height, ASA Grade, level of block and surgery time no significant differences were found between the groups. Similarly, the fetal parameters were found to be not significantly different between the groups. However, the number of bolus doses of vasopressors required for the treatment of spinal-induced hypotension was significantly reduced in Group II (p=0.02). The frequency of bradycardia was found to be higher in patients who were given phenylephrine as compared to patients administered noradrenaline boluses (p=0.03). Five (7.93%) patients had shivering in Group I, while similar episodes were observed in 10 (15.87%) patients (p=0.05). Moreover, no significant difference was observed in comparing the heart rate and mean arterial pressure between the groups. CONCLUSION: Intermittent boluses of norepinephrine are found to be effective in the management of spinal­induced hypotension during caesarean section.

4.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782454

RESUMO

Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3ß-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.


Assuntos
Aterosclerose/tratamento farmacológico , Desmosterol/farmacologia , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Vasos Coronários , Células Espumosas/metabolismo , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Placa Aterosclerótica/metabolismo , Esteróis/metabolismo
5.
Curr Top Med Chem ; 21(10): 863-877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676390

RESUMO

Obesity has become a worldwide health problem. It triggers additional co-morbidities like cardiovascular diseases, cancer, depression, sleep disorders, gastrointestinal problems and many more. Excess accumulation of fat in obesity could be caused by many factors like sedentary lifestyle, consumption of high-fat diet, genetic predisposition, etc. Imbalanced energy metabolism i.e., greater energy consumption than utilisation, invariably underlies obesity. Considering the high prevalence and continuous, uncontrolled increase of this major public health issue, there is an urgent need to find appropriate therapeutic agents with minimal or no side effects. The high prevalence of obesity in recent years has led to a surge in the number of drugs available in the market that claim to control obesity. Although there is a long list of medicines and management strategies that are available, selecting the right therapeutic intervention and feasible management of obesity is a challenge. Several phytochemicals like hydroxycitric acid, flavonoids, tannins, anthocyanins, phytohaemagglutinin, thymoquinone and epigallocatechin gallate have been shown to possess promising anti-obesity properties. However, studies providing information on how various phytochemicals exert their anti-obesity effects are inadequate. This calls for more experimentation in this less explored area of research. Additionally, the complication of obesity arises when it is a result of multiple factors and associated with a number of co-morbidities. In order to handle such complexities, combinatorial therapeutic interventions become effective. In this review, we have described the medicinal chemistry of different highly effective phytochemicals which can be used in the effective treatment and management of obesity.


Assuntos
Fármacos Antiobesidade/química , Inibidores Enzimáticos/química , Obesidade/tratamento farmacológico , Compostos Fitoquímicos/química , Extratos Vegetais/química , Plantas/química , Adipocinas/química , Animais , Antocianinas/química , Fármacos Antiobesidade/farmacologia , Benzoquinonas/química , Catequina/análogos & derivados , Catequina/química , Citratos/química , Descoberta de Drogas , Quimioterapia Combinada , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Flavonoides/química , Humanos , Lipídeos/química , Compostos Fitoquímicos/farmacologia , Fito-Hemaglutininas/química , Extratos Vegetais/farmacologia , Transdução de Sinais , Taninos/química
6.
Curr Stem Cell Rep ; 7(1): 1-12, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36846725

RESUMO

Purpose of Review: The well-established crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for the homeostasis and hematopoietic regeneration in response to blood formation emergencies. Past decade has witnessed that the intercellular communication mediated by the transfer of cytoplasmic material and organelles between cells can regenerate and/or repair the damaged cells. Mitochondria have recently emerged as a potential regulator of HSC fate. This review intends to discuss recent advances in the understanding of the mitochondrial dynamics, specifically focused on the role of mitochondrial transfer, in the maintenance of HSC activity with clear implications in stem cell transplantation and regenerative medicine. Recent Findings: HSC are highly heterogeneous in their mitochondrial metabolism, and the quiescence and potency of HSC depend on the status of mitochondrial dynamics and the clearance of damaged mitochondria. Recent evidence has shown that in stress response, BM stromal cells transfer healthy mitochondria to HSC, facilitate HSC bioenergetics shift towards oxidative phosphorylation, and subsequently stimulate leukocyte expansion. Furthermore, metabolic rewiring following mitochondria transfer from HSPC to BM stromal cells likely to repair the damaged BM niche and accelerate limiting HSC transplantation post myeloablative conditioning.

7.
Blood ; 136(23): 2607-2619, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32929449

RESUMO

The fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the stromal ME is damaged and how it recovers after irradiation is unknown. We report that BM mesenchymal stromal cells (MSC) undergo massive damage to their mitochondrial function after irradiation. Donor healthy HSPC transfer functional mitochondria to the stromal ME, thus improving mitochondria activity in recipient MSC. Mitochondrial transfer to MSC is cell-contact dependent and mediated by HSPC connexin-43 (Cx43). Hematopoietic Cx43-deficient chimeric mice show reduced mitochondria transfer, which was rescued upon re-expression of Cx43 in HSPC or culture with isolated mitochondria from Cx43 deficient HSPCs. Increased intracellular adenosine triphosphate levels activate the purinergic receptor P2RX7 and lead to reduced activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) in HSPC, dramatically increasing mitochondria transfer to BM MSC. Host stromal ME recovery and donor HSPC engraftment were augmented after mitochondria transfer. Deficiency of Cx43 delayed mesenchymal and osteogenic regeneration while in vivo AMPK inhibition increased stromal recovery. As a consequence, the hematopoietic compartment reconstitution was improved because of the recovery of the supportive stromal ME. Our findings demonstrate that healthy donor HSPC not only reconstitute the hematopoietic system after transplantation, but also support and induce the metabolic recovery of their irradiated, damaged ME via mitochondria transfer. Understanding the mechanisms regulating stromal recovery after myeloablative stress are of high clinical interest to optimize BMT procedures and underscore the importance of accessory, non-HSC to accelerate hematopoietic engraftment.


Assuntos
Medula Óssea/fisiologia , Conexina 43/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/transplante , Regeneração , Animais , Humanos , Camundongos
8.
Int J Pharm ; 580: 119212, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32165226

RESUMO

A new class of non-ionic amphiphiles have been synthesised using a combination of polyethylene glycol (PEG) and oligoglycerol dendrons as hydrophilic units and an alkoxy aryl moiety as hydrophobic unit. The resulting amphiphiles were found to aggregate in aqueous medium. Their aggregation behaviour was studied using dynamic light scattering (DLS), fluorescence spectroscopy, and cryogenic electron microscopy (cryo-TEM). The inner hydrophobic core of these aggregates in aqueous medium is capable of encapsulating lipophilic guest molecules. The encapsulation behaviour was studied using Nile red as a hydrophobic dye as well as Curcumin and Dexamethasone as hydrophobic drug candidates. Furthermore, for biological evaluation, cytotoxicity and cellular uptake was studied using different cancer cell lines. The biomedical application of synthesised amphiphiles was further investigated for dermal drug delivery on excised human skin using Nile red encapsulated in the nanocarrier. The release profile of drug/dye encapsulated amphiphiles was studied under physiochemical conditions in the presence of immobilized lipase Novozym 435.


Assuntos
Antracenos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polietilenoglicóis/química , Absorção Cutânea/fisiologia , Células A549 , Antracenos/administração & dosagem , Antracenos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Células HeLa , Humanos , Células MCF-7 , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Técnicas de Cultura de Órgãos , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/metabolismo , Absorção Cutânea/efeitos dos fármacos
9.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991829

RESUMO

Abstract: The crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for homeostasis and hematopoietic regeneration in response to blood formation emergencies after injury, and has been associated with leukemia transformation and progression. Intercellular signals by the BM stromal cells in the form of cell-bound or secreted factors, or by physical interaction, regulate HSC localization, maintenance, and differentiation within increasingly defined BM HSC niches. Gap junctions (GJ) are comprised of arrays of membrane embedded channels formed by connexin proteins, and control crucial signaling functions, including the transfer of ions, small metabolites, and organelles to adjacent cells which affect intracellular mechanisms of signaling and autophagy. This review will discuss the role of GJ in both normal and leukemic hematopoiesis, and highlight some of the most novel approaches that may improve the efficacy of cytotoxic drugs. Connexin GJ channels exert both cell-intrinsic and cell-extrinsic effects on HSC and BM stromal cells, involved in regenerative hematopoiesis after myelosuppression, and represent an alternative system of cell communication through a combination of electrical and metabolic coupling as well as organelle transfer in the HSC niche. GJ intercellular communication (GJIC) in the HSC niche improves cellular bioenergetics, and rejuvenates damaged recipient cells. Unfortunately, they can also support leukemia proliferation and survival by creating leukemic niches that provide GJIC dependent energy sources and facilitate chemoresistance and relapse. The emergence of new strategies to disrupt self-reinforcing malignant niches and intercellular organelle exchange in leukemic niches, while at the same time conserving normal hematopoietic GJIC function, could synergize the effect of chemotherapy drugs in eradicating minimal residual disease. An improved understanding of the molecular basis of connexin regulation in normal and leukemic hematopoiesis is warranted for the re-establishment of normal hematopoiesis after chemotherapy.


Assuntos
Transformação Celular Neoplásica , Junções Comunicantes/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Nicho de Células-Tronco , Animais , Antineoplásicos/farmacologia , Diferenciação Celular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Hematopoese/genética , Humanos , Células-Tronco Mesenquimais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
10.
Indian J Cancer ; 56(4): 315-319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607699

RESUMO

PURPOSE: Limited treatment options are available for patients with advanced non-small cell lung cancer (NSCLC) after failure of first-line platinum-based chemotherapy. The treatment of recurrent advanced NSCLC progressed with the arrival of nivolumab and other immunotherapeutic agents. Our single-center prospective study aimed to present the effectiveness and safety of nivolumab in second-line setting after first-line platinum doublet in Indian patients with advanced NSCLC. PATIENTS AND METHODS: Twenty-nine adult patients with stage IV NSCLC treated with nivolumab after failure of first-line platinum-based chemotherapy at Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, India, between October 2016 and January 2018, were included in the study. Overall survival (OS), hematological, and nonhematological toxicities were evaluated. RESULTS: A total of 29 patients (mean age of 59.6 years at enrollment) were evaluated. Histological evaluation revealed adenocarcinoma (44.8%) and squamous (55.2%) type of cancer. The Eastern Cooperative Oncology Group performance score was II in 7 patients (24.1%) and I in 22 (75.9%) patients. Patients received an average of four cycles of nivolumab. The median survival duration was 101 days, and OS rate in the study was 51.7%. Six patients (20.7%) had stable disease response, five patients (17.2%) had partial response, and three patients (10.3%) were lost to follow-up. Asthenia and cough were the most common nonhematological toxicities. Only three patients developed hematological toxicities (anemia and thrombocytopenia). CONCLUSION: Data from our study suggest nivolumab is well-tolerated and effective in Indian patients with recurrent advanced NSCLC after failure of the multiple first lines of platinum-based combination chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nivolumabe/uso terapêutico , Adulto , Idoso , Anemia/etiologia , Astenia/etiologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Resistencia a Medicamentos Antineoplásicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Humanos , Índia , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Compostos de Platina/uso terapêutico , Estudos Prospectivos , Análise de Sobrevida
11.
Stem Cells Transl Med ; 8(6): 557-567, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793529

RESUMO

Bacterial and fungal infections are a major cause of morbidity and mortality in neutropenic patients. Donor-derived neutrophil transfusions have been used for prophylaxis or treatment for infection in neutropenic patients. However, the short half-life and the limited availability of large numbers of donor-derived neutrophils for transfusion remain a significant hurdle in the implementation of neutrophil transfusion therapy. Here, we investigate the in vitro and in vivo activity of neutrophils generated from human induced pluripotent stem cells (iPSC), a potentially unlimited resource to produce neutrophils for transfusion. Phenotypic analysis of iPSC-derived neutrophils reveal reactive oxygen species production at similar or slightly higher than normal peripheral blood neutrophils, but have an ∼50%-70% reduced Escherichia coli phagocytosis and phorbol 12-myristate 13-acetate induced formation of neutrophil extracellular traps (NET). Signaling of granulocytic precursors identified impaired AKT activation, but not ERK or STAT3, in agonist-stimulated iPSC-derived neutrophils. Expression of a constitutively activated AKT in iPSC-derived neutrophils restores most phagocytic activity and NET formation. In a model of bacterial induced peritonitis in immunodeficient mice, iPSC-derived neutrophils, with or without corrected AKT activation, migrate similarly to the peritoneal fluid as peripheral blood neutrophils, whereas the expression of activated AKT significantly improves their phagocytic activity in vivo. Stem Cells Translational Medicine 2019;8:557-567.


Assuntos
Neutrófilos/imunologia , Fagocitose , Adulto , Animais , Escherichia coli/patogenicidade , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Neutrófilos/citologia , Neutrófilos/metabolismo , Neutrófilos/transplante , Peritonite/patologia , Peritonite/terapia , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia
12.
Science ; 361(6402): 599-603, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093598

RESUMO

Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 (Nrp1) and Vascular endothelial growth factor receptor 1 (Vegfr1; also known as Flt1) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.


Assuntos
Quilomícrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/metabolismo , Neuropilina-1/genética , Obesidade/etiologia , Obesidade/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Antígenos CD/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Quilomícrons/efeitos adversos , Gorduras na Dieta/efeitos adversos , Enterócitos/metabolismo , Deleção de Genes , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Curr Stem Cell Rep ; 4(2): 166-181, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31453073

RESUMO

PURPOSE OF REVIEW: Functional decline of hematopoiesis that occurs in the elderly, or in patients who receive therapies that trigger cellular senescence effects, results in a progressive reduction in the immune response and an increased incidence of myeloid malignancy. Intracellular signals in hematopoietic stem cells and progenitors (HSC/P) mediate systemic, microenvironment, and cell-intrinsic effector aging signals that induce their decline. This review intends to summarize and critically review our advances in the understanding of the intracellular signaling pathways responsible for HSC decline during aging and opportunities for intervention. RECENT FINDINGS: For a long time, aging of HSC has been thought to be an irreversible process imprinted in stem cells due to the cell intrinsic nature of aging. However, recent murine models and human correlative studies provide evidence that aging is associated with molecular signaling pathways, including oxidative stress, metabolic dysfunction, loss of polarity and an altered epigenome. These signaling pathways provide potential targets for prevention or reversal of age-related changes. SUMMARY: Here we review our current understanding of the signalling pathways that are differentially activated or repressed during HSC/P aging, focusing on the oxidative, metabolic, biochemical and structural consequences downstream, and cell-intrinsic, systemic, and environmental influences.

14.
Bone ; 105: 75-86, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28811200

RESUMO

Adiponectin regulates various metabolic processes including glucose flux, lipid breakdown and insulin response. We recently reported that adiponectin receptor1 (adipoR1) activation by a small molecule reverses osteopenia in leptin receptor deficient db/db (diabetic) mice. However, the role of adiponectin in bone metabolism under the setting of post-menopausal (estrogen-deficiency) osteopenia and associated metabolic derangements has not been studied. Here, we studied the therapeutic effect of the globular form of adiponectin (gAd), which is predominantly an adipoR1 agonist, in aged ovariectomized (OVX) rats and compared it with standard-of-care anti-osteoporosis drugs. In OVX rats with established osteopenia, gAd completely restored BMD and load bearing capacity and improved bone quality. Skeletal effects of gAd were comparable to PTH (osteoanabolic) but better than alendronate (anti-catabolic). Both osteoanabolic and anti-catabolic mechanisms led to the anti-osteoporosis effect of gAd. In cultured osteoblasts and bones, gAd increased a) adipoR1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) expression to promote mitochondrial respiration, which likely fueled osteoblast differentiation, b) suppressed sclerostin (a wnt antagonist) in a sirtuin1-dependent manner and c) decreased receptor-activator of nuclear factor κB ligand (RANKL) to achieve its anti-catabolic effect. The OVX-induced sarcopenia and insulin resistance were also improved by gAd. We conclude that gAd has therapeutic efficacy in estrogen deficiency-induced osteoporosis, sarcopenia and insulin resistance and hold metabolic disease modifying potential in postmenopausal women.


Assuntos
Adiponectina/uso terapêutico , Composição Corporal , Ovariectomia , Sarcopenia/tratamento farmacológico , Adenilato Quinase/metabolismo , Adiponectina/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Reabsorção Óssea/complicações , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Feminino , Marcadores Genéticos , Teste de Tolerância a Glucose , Vértebras Lombares/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteogênese/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Sarcopenia/complicações , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Cell Death Dis ; 7(9): e2348, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27584786

RESUMO

Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Neutrófilos/citologia , Neutrófilos/enzimologia , Óxido Nítrico/farmacologia , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Free Radic Biol Med ; 86: 1-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25881549

RESUMO

Posttranslational modifications (PTMs) of cytoskeleton proteins due to oxidative stress associated with several pathological conditions often lead to alterations in cell function. The current study evaluates the effect of nitric oxide (DETA-NO)-induced oxidative stress-related S-glutathionylation of cytoskeleton proteins in human PMNs. By using in vitro and genetic approaches, we showed that S-glutathionylation of L-plastin (LPL) and ß-actin promotes reduced chemotaxis, polarization, bactericidal activity, and phagocytosis. We identified Cys-206, Cys-283, and Cys-460as S-thiolated residues in the ß-actin-binding domain of LPL, where cys-460 had the maximum score. Site-directed mutagenesis of LPL Cys-460 further confirmed the role in the redox regulation of LPL. S-Thiolation diminished binding as well as the bundling activity of LPL. The presence of S-thiolated LPL was detected in neutrophils from both diabetic patients and db/db mice with impaired PMN functions. Thus, enhanced nitroxidative stress may results in LPL S-glutathionylation leading to impaired chemotaxis, polarization, and bactericidal activity of human PMNs, providing a mechanistic basis for their impaired functions in diabetes mellitus.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neutrófilos/fisiologia , Adulto , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Polaridade Celular , Quimiotaxia , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Feminino , Glutationa/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Óxido Nítrico/metabolismo , Estresse Oxidativo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Adulto Jovem
17.
Arch Toxicol ; 89(2): 243-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24825450

RESUMO

Inhibition mechanism(s) of protein kinase B/Akt1 and its consequences on related cell signaling were investigated in human neuroblastoma SH-SY5Y cells exposed to 4-hydroxy-trans-2-nonenal (4-HNE), one of the most reactive aldehyde by-products of lipid peroxidation. In silico data indicate that 4-HNE interacts with kinase domain of Akt1 with the total docking score of 6.0577 and also forms H-bond to Glu234 residue similar to highly potent Akt1 inhibitor imidazopiperidine analog 8b, in which the protonated imidazole nitrogen involves in two hydrogen bonds between Glu234 and Asp292. The strong hydrogen bonding with Glu234 and hydrophobic interactions with several residues, namely Leu156, Gly157, Val164, Ala177, Tyr229, Ala230, Met281 and Thr291, at the vicinity which is normally occupied by the ribose of ATP, appear to be the main causes of Akt1 inhibition and lead to the significant conformational change on this region of protein. Results of mutational docking prove that Glu234 plays a major role in 4-HNE-mediated Akt1 inhibition. In silico data on Akt inhibition were further validated by observing the down-regulated levels of phosphorylated (Thr308/Ser493) Akt1 as well as the altered levels of the downstream targets of pAkt, namely downregulated levels of pGSK3ß (Ser9), ß-catenin, Bcl2 and upregulated levels of pro-apoptotic markers, namely Bad, Bax, P(53) and caspase-9/3. The cellular fate of such pAkt inhibition was evidenced by increased reactive oxygen species, degraded nuclei, transferase dUTP nick end labeling positive cells and upregulated levels of pJNK1/2. We identified that 4-HNE-mediated Akt1 inhibition was due to the competitive inhibition of ATP by 4-HNE at the kinase domain of ATP binding sites.


Assuntos
Trifosfato de Adenosina/metabolismo , Aldeídos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
PLoS One ; 9(3): e91946, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24663500

RESUMO

The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics.


Assuntos
Encéfalo/citologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Monocrotofós/metabolismo , Monocrotofós/toxicidade , Biocatálise/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/química , Humanos , Simulação de Acoplamento Molecular , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Conformação Proteica , Transcrição Gênica/efeitos dos fármacos , Xenobióticos/metabolismo , Xenobióticos/toxicidade
19.
Curr Med Chem ; 21(9): 1160-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24180274

RESUMO

In the present work, QSAR model was derived by multiple linear regression method for the prediction of anticancer activity of 18ß-glycyrrhetinic acid derivatives against the human breast cancer cell line MCF-7. The QSAR model for anti-proliferative activity against MCF-7 showed high correlation (r(2)=0.90 and rCV(2)=0.83) and indicated that chemical descriptors namely, dipole moment (debye), steric energy (kcal/mole), heat of formation (kcal/mole), ionization potential (eV), LogP, LUMO energy (eV) and shape index (basic kappa, order 3) correlate well with activity. The QSAR virtually predicted that active derivatives were first semi-synthesized and characterized on the basis of their (1)H and (13)C NMR spectroscopic data and then were in-vitro tested against MCF-7 cancer cell line. In particular, octylamide derivative of glycyrrhetinic acid GA-12 has marked cytotoxic activity against MCF-7 similar to that of standard anticancer drug paclitaxel. The biological assays of active derivative selected by virtual screening showed significant experimental activity.


Assuntos
Antineoplásicos/síntese química , Neoplasias da Mama/patologia , Ácido Glicirretínico/análogos & derivados , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Ácido Glicirretínico/síntese química , Ácido Glicirretínico/farmacologia , Humanos , Células MCF-7 , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade
20.
Neuromolecular Med ; 15(3): 570-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23846855

RESUMO

Developing neurons, derived from the human umbilical cord blood stem cells (hUCBSCs), were investigated for their stage-specific responses against 3-methylcholanthrene (MC), a well-known polycyclic aromatic hydrocarbon. Three-dimensional (3D) molecular docking demonstrates the strong hydrogen bonding and hydrophobic interactions of MC with amino acids of aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT) within 4 Å and subsequent inhibition of cAMP response element-binding protein (CREB), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. Protein-protein docking also confirms that induced levels of AHR inhibit the neurogenesis-related transcription factor (CREB) with maximum docking scores. In concurrence with in silico data, MC exposure significantly up regulates the expression and activity of AHR, CYP1A1 and glutathione S-transferase P1-1 (GSTP1-1) and down regulates the expression of CREB, AMPA and NMDA receptors in hUCBSC-derived neuronal cells at various maturity (0, 2, 4, 8 days of differentiation). MC-mediated significant down regulation in the expression of stage-specific neuronal markers (Nestin, neural cell adhesion molecule-NCAM, synaptophysin-SYP, CREB, AMPA and N-methyl-D-aspartate receptor subunit 2A-NR2A) was also noticed in cells all through the differentiation. Data identify the possible interference of MC in neuronal transmission and neurogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Metilcolantreno/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Antígenos CD34/análise , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Células Cultivadas , Simulação por Computador , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sangue Fetal/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Metilcolantreno/química , Metilcolantreno/metabolismo , Microssomos/enzimologia , Simulação de Acoplamento Molecular , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Receptores de AMPA/metabolismo , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Antígenos Thy-1/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA