Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1322814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596672

RESUMO

Introduction: The innate immune system serves the crucial first line of defense against a wide variety of potential threats, during which the production of pro-inflammatory cytokines IFN-I and TNFα are key. This astonishing power to fight invaders, however, comes at the cost of risking IFN-I-related pathologies, such as observed during autoimmune diseases, during which IFN-I and TNFα response dynamics are dysregulated. Therefore, these response dynamics must be tightly regulated, and precisely matched with the potential threat. This regulation is currently far from understood. Methods: Using droplet-based microfluidics and ODE modeling, we studied the fundamentals of single-cell decision-making upon TLR signaling in human primary immune cells (n = 23). Next, using biologicals used for treating autoimmune diseases [i.e., anti-TNFα, and JAK inhibitors], we unraveled the crosstalk between IFN-I and TNFα signaling dynamics. Finally, we studied primary immune cells isolated from SLE patients (n = 8) to provide insights into SLE pathophysiology. Results: single-cell IFN-I and TNFα response dynamics display remarkable differences, yet both being highly heterogeneous. Blocking TNFα signaling increases the percentage of IFN-I-producing cells, while blocking IFN-I signaling decreases the percentage of TNFα-producing cells. Single-cell decision-making in SLE patients is dysregulated, pointing towards a dysregulated crosstalk between IFN-I and TNFα response dynamics. Discussion: We provide a solid droplet-based microfluidic platform to study inherent immune secretory behaviors, substantiated by ODE modeling, which can challenge the conceptualization within and between different immune signaling systems. These insights will build towards an improved fundamental understanding on single-cell decision-making in health and disease.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Humanos , Fator de Necrose Tumoral alfa , Transdução de Sinais
2.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106208

RESUMO

Anoikis resistance or evasion of cell death triggered by cell detachment into suspension is a hallmark of cancer that is concurrent with cell survival and metastasis. The effects of frequent matrix detachment encounters on the development of anoikis resistance in cancer remains poorly defined. Here we show using a panel of ovarian cancer models, that repeated exposure to suspension stress in vitro followed by attached recovery growth leads to the development of anoikis resistance paralleling in vivo development of anoikis resistance in ovarian cancer ascites. This resistance is concurrent with enhanced invasion, chemoresistance and the ability of anoikis adapted cells to metastasize to distant sites. Adapted anoikis resistant cells show a heightened dependency on oxidative phosphorylation and can also evade immune surveillance. We find that such acquired anoikis resistance is not genetic, as acquired resistance persists for a finite duration in the absence of suspension stress. Transcriptional reprogramming is however essential to this process, as acquisition of adaptive anoikis resistance in vitro and in vivo is exquisitely sensitive to inhibition of CDK8/19 Mediator kinase, a pleiotropic regulator of transcriptional reprogramming. Our data demonstrate that growth after recovery from repeated exposure to suspension stress is a direct contributor to metastasis and that inhibition of CDK8/19 Mediator kinase during such adaptation provides a therapeutic opportunity to prevent both local and distant metastasis in cancer.

3.
Curr Biol ; 33(23): 5215-5224.e5, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37949064

RESUMO

Understanding how population-size homeostasis emerges from stochastic individual cell behaviors remains a challenge in biology.1,2,3,4,5,6,7 The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle, where a prolonged G1 phase is followed by n rounds of alternating division cycles (S/M) to produce 2n daughters. A "Commitment" sizer in mid-G1 phase ensures sufficient cell growth before completing the cell cycle. A mitotic sizer couples mother-cell size to division number (n) such that daughter size distributions are uniform regardless of mother size distributions. Although daughter size distributions were highly robust to altered growth conditions, ∼40% of daughter cells fell outside of the 2-fold range expected from a "perfect" multiple fission sizer.7,8 A simple intuitive power law model with stochastic noise failed to reproduce individual division behaviors of tracked single cells. Through additional iterative modeling, we identified an alternative modified threshold (MT) model, where cells need to cross a threshold greater than 2-fold their median starting size to become division-competent (i.e., Committed), after which their behaviors followed a power law model. The Commitment versus mitotic size threshold uncoupling in the MT model was likely a key pre-adaptation in the evolution of volvocine algal multicellularity. A similar experimental approach was used in size mutants mat3/rbr and dp1 that are, respectively, missing repressor or activator subunits of the retinoblastoma tumor suppressor complex (RBC). Both mutants showed altered relationships between Commitment and mitotic sizer, suggesting that RBC functions to decouple the two sizers.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/genética , Divisão Celular , Ciclo Celular , Proliferação de Células
4.
Proc Natl Acad Sci U S A ; 120(48): e2309082120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988472

RESUMO

The importance of memory in bacterial decision-making is relatively unexplored. We show here that a prior experience of swarming is remembered when Escherichia coli encounters a new surface, improving its future swarming efficiency. We conducted >10,000 single-cell swarm assays to discover that cells store memory in the form of cellular iron levels. This "iron" memory preexists in planktonic cells, but the act of swarming reinforces it. A cell with low iron initiates swarming early and is a better swarmer, while the opposite is true for a cell with high iron. The swarming potential of a mother cell, which tracks with its iron memory, is passed down to its fourth-generation daughter cells. This memory is naturally lost by the seventh generation, but artificially manipulating iron levels allows it to persist much longer. A mathematical model with a time-delay component faithfully recreates the observed dynamic interconversions between different swarming potentials. We demonstrate that cellular iron levels also track with biofilm formation and antibiotic tolerance, suggesting that iron memory may impact other physiologies.


Assuntos
Escherichia coli , Ferro , Escherichia coli/genética , Antibacterianos
5.
Nat Commun ; 14(1): 7130, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932277

RESUMO

Gene expression states persist for varying lengths of time at the single-cell level, a phenomenon known as gene expression memory. When cells switch states, losing memory of their prior state, this transition can occur in the absence of genetic changes. However, we lack robust methods to find regulators of memory or track state switching. Here, we develop a lineage tracing-based technique to quantify memory and identify cells that switch states. Applied to melanoma cells without therapy, we quantify long-lived fluctuations in gene expression that are predictive of later resistance to targeted therapy. We also identify the PI3K and TGF-ß pathways as state switching modulators. We propose a pretreatment model, first applying a PI3K inhibitor to modulate gene expression states, then applying targeted therapy, which leads to less resistance than targeted therapy alone. Together, we present a method for finding modulators of gene expression memory and their associated cell fates.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases , Diferenciação Celular/genética , Fator de Crescimento Transformador beta
6.
Nucleic Acids Res ; 51(18): 9905-9919, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670559

RESUMO

Translational fidelity is critical for microbial fitness, survival and stress responses. Much remains unknown about the genetic and environmental control of translational fidelity and its single-cell heterogeneity. In this study, we used a high-throughput fluorescence-based assay to screen a knock-out library of Escherichia coli and identified over 20 genes critical for stop-codon readthrough. Most of these identified genes were not previously known to affect translational fidelity. Intriguingly, we show that several genes controlling metabolism, including cyaA and crp, enhance stop-codon readthrough. CyaA catalyzes the synthesis of cyclic adenosine monophosphate (cAMP). Combining RNA sequencing, metabolomics and biochemical analyses, we show that deleting cyaA impairs amino acid catabolism and production of ATP, thus repressing the transcription of rRNAs and tRNAs to decrease readthrough. Single-cell analyses further show that cAMP is a major driver of heterogeneity in stop-codon readthrough and rRNA expression. Our results highlight that carbon metabolism is tightly coupled with stop-codon readthrough.


Assuntos
Códon de Terminação , AMP Cíclico , Escherichia coli , Sequência de Bases , Códon de Terminação/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo
7.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37609133

RESUMO

The importance of memory in bacterial decision-making is relatively unexplored. We show here that a prior experience of swarming is remembered when E. coli encounters a new surface, improving its future swarming efficiency. We conducted >10,000 single-cell swarm assays to discover that cells store memory in the form of cellular iron levels. This memory pre-exists in planktonic cells, but the act of swarming reinforces it. A cell with low iron initiates swarming early and is a better swarmer, while the opposite is true for a cell with high iron. The swarming potential of a mother cell, whether low or high, is passed down to its fourth-generation daughter cells. This memory is naturally lost by the seventh generation, but artificially manipulating iron levels allows it to persist much longer. A mathematical model with a time-delay component faithfully recreates the observed dynamic interconversions between different swarming potentials. We also demonstrate that iron memory can integrate multiple stimuli, impacting other bacterial behaviors such as biofilm formation and antibiotic tolerance.

8.
PLoS Pathog ; 18(11): e1010774, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441826

RESUMO

Expression of the transcriptional transactivator protein Tax, encoded on the proviral plus-strand of human T-cell leukaemia virus type 1 (HTLV-1), is crucial for the replication of the virus, but Tax-expressing cells are rarely detected in fresh blood ex vivo. The dynamics and consequences of the proviral plus-strand transcriptional burst remain insufficiently characterised. We combined time-lapse live-cell imaging, single-cell tracking and mathematical modelling to study the dynamics of Tax expression at single-cell resolution in two naturally-infected, non-malignant T-cell clones transduced with a short-lived enhanced green fluorescent protein (d2EGFP) Tax reporter system. Five different patterns of Tax expression were observed during the 30-hour observation period; the distribution of these patterns differed between the two clones. The mean duration of Tax expression in the two clones was 94 and 417 hours respectively, estimated from mathematical modelling of the experimental data. Tax expression was associated with a transient slowing in cell-cycle progression and proliferation, increased apoptosis, and enhanced activation of the DNA damage response pathways. Longer-term follow-up (14 days) revealed an increase in the proportion of proliferating cells and a decrease in the fraction of apoptotic cells as the cells ceased Tax expression, resulting in a greater net expansion of the initially Tax-positive population. Time-lapse live-cell imaging showed enhanced cell-to-cell adhesion among Tax-expressing cells, and decreased cell motility of Tax-expressing cells at the single-cell level. The results demonstrate the within-clone and between-clone heterogeneity in the dynamics and patterns of HTLV-1 plus-strand transcriptional bursts and the balance of positive and negative consequences of the burst for the host cell.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Provírus , Humanos , Provírus/genética , Vírus Linfotrópico T Tipo 1 Humano/genética
9.
Cancer Discov ; 12(4): 1022-1045, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34911733

RESUMO

Resistance to targeted therapies is an important clinical problem in HER2-positive (HER2+) breast cancer. "Drug-tolerant persisters" (DTP), a subpopulation of cancer cells that survive via reversible, nongenetic mechanisms, are implicated in resistance to tyrosine kinase inhibitors (TKI) in other malignancies, but DTPs following HER2 TKI exposure have not been well characterized. We found that HER2 TKIs evoke DTPs with a luminal-like or a mesenchymal-like transcriptome. Lentiviral barcoding/single-cell RNA sequencing reveals that HER2+ breast cancer cells cycle stochastically through a "pre-DTP" state, characterized by a G0-like expression signature and enriched for diapause and/or senescence genes. Trajectory analysis/cell sorting shows that pre-DTPs preferentially yield DTPs upon HER2 TKI exposure. Cells with similar transcriptomes are present in HER2+ breast tumors and are associated with poor TKI response. Finally, biochemical experiments indicate that luminal-like DTPs survive via estrogen receptor-dependent induction of SGK3, leading to rewiring of the PI3K/AKT/mTORC1 pathway to enable AKT-independent mTORC1 activation. SIGNIFICANCE: DTPs are implicated in resistance to anticancer therapies, but their ontogeny and vulnerabilities remain unclear. We find that HER2 TKI-DTPs emerge from stochastically arising primed cells ("pre-DTPs") that engage either of two distinct transcriptional programs upon TKI exposure. Our results provide new insights into DTP ontogeny and potential therapeutic vulnerabilities. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais
10.
Front Microbiol ; 13: 1050516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824587

RESUMO

The inherent stochasticity in the gene product levels can drive single cells within an isoclonal population to different phenotypic states. The dynamic nature of this intercellular variation, where individual cells can transition between different states over time, makes it a particularly hard phenomenon to characterize. We reviewed recent progress in leveraging the classical Luria-Delbrück experiment to infer the transient heritability of the cellular states. Similar to the original experiment, individual cells were first grown into cell colonies, and then, the fraction of cells residing in different states was assayed for each colony. We discuss modeling approaches for capturing dynamic state transitions in a growing cell population and highlight formulas that identify the kinetics of state switching from the extent of colony-to-colony fluctuations. The utility of this method in identifying multi-generational memory of the both expression and phenotypic states is illustrated across diverse biological systems from cancer drug resistance, reactivation of human viruses, and cellular immune responses. In summary, this fluctuation-based methodology provides a powerful approach for elucidating cell-state transitions from a single time point measurement, which is particularly relevant in situations where measurements lead to cell death (as in single-cell RNA-seq or drug treatment) or cause an irreversible change in cell physiology.

11.
Trends Immunol ; 42(9): 824-839, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34364820

RESUMO

Type I Interferon (IFN-I) responses were first recognized for their role in antiviral immunity, but it is now widely appreciated that IFN-Is have many immunomodulatory functions, influencing antitumor responses, autoimmune manifestations, and antimicrobial defenses. Given these pivotal roles, it may be surprising that multilayered stochastic events create highly heterogeneous, but tightly regulated, all-or-nothing cellular decisions. Recently, mathematical models have provided crucial insights into the stochastic nature of antiviral IFN-I responses, which we critically evaluate in this review. In this context, we emphasize the need for innovative single-cell technologies combined with mathematical models to further reveal, understand, and predict the complexity of the IFN-I system in physiological and pathological conditions that may be relevant to a plethora of diseases.


Assuntos
Interferon Tipo I , Viroses/imunologia , Imunidade , Interferon Tipo I/imunologia
12.
PLoS Genet ; 17(4): e1009520, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826644

RESUMO

The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell size in polyploid cells. In haploid mutant cells with larger cell sizes, the rDNA repeat copy number rises. By combining mathematical modeling and experimental work with the large-size cln3 strain, we observed that the increasing repeat copy number is based on a feedback mechanism in which Sir2 histone deacetylase homeostatically controls the amplification of rDNA repeats in a volume-dependent manner. This amplification is paralleled with an increase in rRNA nTR, which indicates a control of the RNA pol I synthesis rate by cell volume.


Assuntos
Ciclinas/genética , Homeostase/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Transcrição Gênica , Tamanho Celular , DNA Ribossômico/genética , Genes de RNAr/genética , Haploidia , Modelos Teóricos , RNA Polimerase I/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética
13.
Nat Commun ; 12(1): 1836, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758175

RESUMO

To prevent damage to the host or its commensal microbiota, epithelial tissues must match the intensity of the immune response to the severity of a biological threat. Toll-like receptors allow epithelial cells to identify microbe associated molecular patterns. However, the mechanisms that mitigate biological noise in single cells to ensure quantitatively appropriate responses remain unclear. Here we address this question using single cell and single molecule approaches in mammary epithelial cells and primary organoids. We find that epithelial tissues respond to bacterial microbe associated molecular patterns by activating a subset of cells in an all-or-nothing (i.e. digital) manner. The maximum fraction of responsive cells is regulated by a bimodal epigenetic switch that licenses the TLR2 promoter for transcription across multiple generations. This mechanism confers a flexible memory of inflammatory events as well as unique spatio-temporal control of epithelial tissue-level immune responses. We propose that epigenetic licensing in individual cells allows for long-term, quantitative fine-tuning of population-level responses.


Assuntos
Bactérias/imunologia , Células Epiteliais/imunologia , Imunidade Inata , Lipopeptídeos/imunologia , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Bactérias/metabolismo , Linhagem Celular , Citocinas/metabolismo , Citocinas/farmacologia , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Flagelina/farmacologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Hibridização in Situ Fluorescente , Glândulas Mamárias Animais , Camundongos , Organoides/efeitos dos fármacos , Organoides/imunologia , Organoides/metabolismo , Regiões Promotoras Genéticas , RNA-Seq , Transdução de Sinais/imunologia , Análise de Célula Única , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
14.
Cell ; 182(4): 947-959.e17, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32735851

RESUMO

Non-genetic factors can cause individual cells to fluctuate substantially in gene expression levels over time. It remains unclear whether these fluctuations can persist for much longer than the time of one cell division. Current methods for measuring gene expression in single cells mostly rely on single time point measurements, making the duration of gene expression fluctuations or cellular memory difficult to measure. Here, we combined Luria and Delbrück's fluctuation analysis with population-based RNA sequencing (MemorySeq) for identifying genes transcriptome-wide whose fluctuations persist for several divisions. MemorySeq revealed multiple gene modules that expressed together in rare cells within otherwise homogeneous clonal populations. These rare cell subpopulations were associated with biologically distinct behaviors like proliferation in the face of anti-cancer therapeutics. The identification of non-genetic, multigenerational fluctuations can reveal new forms of biological memory in single cells and suggests that non-genetic heritability of cellular state may be a quantitative property.


Assuntos
Análise de Célula Única/métodos , Transcriptoma , Divisão Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Genes Reporter , Humanos , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Análise de Sequência de RNA , Imagem com Lapso de Tempo
15.
Cell Syst ; 10(4): 363-378.e12, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32325034

RESUMO

Non-genetic transcriptional variability is a potential mechanism for therapy resistance in melanoma. Specifically, rare subpopulations of cells occupy a transient pre-resistant state characterized by coordinated high expression of several genes and survive therapy. How might these rare states arise and disappear within the population? It is unclear whether the canonical models of probabilistic transcriptional pulsing can explain this behavior, or if it requires special, hitherto unidentified mechanisms. We show that a minimal model of transcriptional bursting and gene interactions can give rise to rare coordinated high expression states. These states occur more frequently in networks with low connectivity and depend on three parameters. While entry into these states is initiated by a long transcriptional burst that also triggers entry of other genes, the exit occurs through independent inactivation of individual genes. Together, we demonstrate that established principles of gene regulation are sufficient to describe this behavior and argue for its more general existence. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Redes Reguladoras de Genes/genética , Melanoma/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Modelos Genéticos , Modelos Teóricos , Neoplasias/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
16.
Curr Opin Biotechnol ; 63: 89-98, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31927423

RESUMO

One of the most interesting, difficult, and potentially useful topics in computational biology is the inference of gene regulatory networks (GRNs) from expression data. Although researchers have been working on this topic for more than a decade and much progress has been made, it remains an unsolved problem and even the most sophisticated inference algorithms are far from perfect. In this paper, we review the latest developments in network inference, including state-of-the-art algorithms like PIDC, Phixer, and more. We also discuss unsolved computational challenges, including the optimal combination of algorithms, integration of multiple data sources, and pseudo-temporal ordering of static expression data. Lastly, we discuss some exciting applications of network inference in cancer research, and provide a list of useful software tools for researchers hoping to conduct their own network inference analyses.


Assuntos
Redes Reguladoras de Genes , Biologia de Sistemas , Algoritmos , Biologia Computacional , Software
17.
PLoS Pathog ; 15(11): e1008164, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738810

RESUMO

The human T cell leukemia virus HTLV-1 establishes a persistent infection in vivo in which the viral sense-strand transcription is usually silent at a given time in each cell. However, cellular stress responses trigger the reactivation of HTLV-1, enabling the virus to transmit to a new host cell. Using single-molecule RNA FISH, we measured the kinetics of the HTLV-1 transcriptional reactivation in peripheral blood mononuclear cells (PBMCs) isolated from HTLV-1+ individuals. The abundance of the HTLV-1 sense and antisense transcripts was quantified hourly during incubation of the HTLV-1-infected PBMCs ex vivo. We found that, in each cell, the sense-strand transcription occurs in two distinct phases: the initial low-rate transcription is followed by a phase of rapid transcription. The onset of transcription peaked between 1 and 3 hours after the start of in vitro incubation. The variance in the transcription intensity was similar in polyclonal HTLV-1+ PBMCs (with tens of thousands of distinct provirus insertion sites), and in samples with a single dominant HTLV-1+ clone. A stochastic simulation model was developed to estimate the parameters of HTLV-1 proviral transcription kinetics. In PBMCs from a leukemic subject with one dominant T-cell clone, the model indicated that the average duration of HTLV-1 sense-strand activation by Tax (i.e. the rapid transcription) was less than one hour. HTLV-1 antisense transcription was stable during reactivation of the sense-strand. The antisense transcript HBZ was produced at an average rate of ~0.1 molecules per hour per HTLV-1+ cell; however, between 20% and 70% of HTLV-1-infected cells were HBZ-negative at a given time, the percentage depending on the individual subject. HTLV-1-infected cells are exposed to a range of stresses when they are drawn from the host, which initiate the viral reactivation. We conclude that whereas antisense-strand transcription is stable throughout the stress response, the HTLV-1 sense-strand reactivation is highly heterogeneous and occurs in short, self-terminating bursts.


Assuntos
Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Leucócitos Mononucleares/virologia , Análise de Célula Única/métodos , Proteínas Virais/genética , Ativação Viral/genética , Latência Viral/genética , Células Cultivadas , Regulação Viral da Expressão Gênica , Infecções por HTLV-I/genética , Humanos , Hibridização in Situ Fluorescente , Cinética , Processos Estocásticos , Replicação Viral
18.
Mol Syst Biol ; 15(9): e8685, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31556489

RESUMO

The p53 tumor suppressor regulates distinct responses to cellular stresses. Although different stresses generate different p53 dynamics, the mechanisms by which cells decode p53 dynamics to differentially regulate target genes are not well understood. Here, we determined in individual cells how canonical p53 target gene promoters vary in responsiveness to features of p53 dynamics. Employing a chemical perturbation approach, we independently modulated p53 pulse amplitude, duration, or frequency, and we then monitored p53 levels and target promoter activation in individual cells. We identified distinct signal processing features-thresholding in response to amplitude modulation, a refractory period in response to duration modulation, and dynamic filtering in response to frequency modulation. We then showed that the signal processing features not only affect p53 target promoter activation, they also affect p53 regulation and downstream cellular functions. Our study shows how different promoters can differentially decode features of p53 dynamics to generate distinct responses, providing insight into how perturbing p53 dynamics can be used to generate distinct cell fates.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteína Supressora de Tumor p53 , Biologia Computacional , Células HEK293 , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia
19.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043529

RESUMO

Chandipura virus (CHPV), a cytoplasmic RNA virus, has been implicated in several outbreaks of acute encephalitis in India. Despite the relevance of CHPV to human health, how the virus interacts with the host signaling machinery remains obscure. In response to viral infections, mammalian cells activate RelA/NF-κB heterodimers, which induce genes encoding interferon beta (IFN-ß) and other immune mediators. Therefore, RelA is generally considered to be an antiviral transcription factor. However, RelA activates a wide spectrum of genes in physiological settings, and there is a paucity of direct genetic evidence substantiating antiviral RelA functions. Using mouse embryonic fibroblasts, we genetically dissected the role of RelA in CHPV pathogenesis. We found that CHPV indeed activated RelA and that RelA deficiency abrogated the expression of IFN-ß in response to virus infections. Unexpectedly, infection of Rela-/- fibroblasts led to a decreased CHPV yield. Our investigation clarified that RelA-dependent synthesis of prosurvival factors restrained infection-inflicted cell death and that exacerbated cell death processes prevented multiplication of CHPV in RelA-deficient cells. Chikungunya virus, a cytopathic RNA virus associated also with epidemics, required RelA, and Japanese encephalitis virus, which produced relatively minor cytopathic effects in fibroblasts, circumvented the need of RelA for their propagation. In sum, we documented a proviral function of the pleiotropic factor RelA linked to its prosurvival properties. RelA promoted the growth of cytopathic RNA viruses by extending the life span of infected cells, which serve as the replicative niche of intracellular pathogens. We argue that our finding bears significance for understanding host-virus interactions and may have implications for antiviral therapeutic regimes.IMPORTANCE RelA/NF-κB participates in a wide spectrum of physiological processes, including shaping immune responses against invading pathogens. In virus-infected cells, RelA typically induces the expression of IFN-ß, which restrains viral propagation in neighboring cells involving paracrine mechanisms. Our study suggested that RelA might also play a proviral role. A cell-autonomous RelA activity amplified the yield of Chandipura virus, a cytopathic RNA virus associated with human epidemics, by extending the life span of infected cells. Our finding necessitates a substantial revision of our understanding of host-virus interactions and indicates a dual role of NF-κB signaling during the course of RNA virus infections. Our study also bears significance for therapeutic regimes which alter NF-κB activities while alleviating the viral load.


Assuntos
Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Interações Hospedeiro-Patógeno , Infecções por Rhabdoviridae/metabolismo , Fator de Transcrição RelA/metabolismo , Vesiculovirus/fisiologia , Células 3T3 , Animais , Linhagem Celular , Chlorocebus aethiops , Embrião de Mamíferos/patologia , Embrião de Mamíferos/virologia , Fibroblastos/patologia , Fibroblastos/virologia , Camundongos , Infecções por Rhabdoviridae/patologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA