Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 912038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330531

RESUMO

Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue-resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRM-like cells within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and a transcriptionally TRM-like profile distinct from blood CD8+ T-cells. In PLWH, CD8+ TRM-like cells are expanded and adopt a more cytolytic, activated, and exhausted phenotype not reversed by antiretroviral therapy (ART). This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood suggesting a higher antigen burden in tonsils. Single-cell transcriptional and clonotype resolution showed that these HIV-specific CD8+ T-cells in the tonsils express heterogeneous signatures of T-cell activation, clonal expansion, and exhaustion ex-vivo. Interestingly, this signature was absent in a natural HIV controller, who expressed lower PD-1 and CXCR5 levels and reduced transcriptional evidence of T-cell activation, exhaustion, and cytolytic activity. These data provide important insights into lymphoid tissue-derived HIV-specific CD8+ TRM-like phenotypes in settings of HIV remission and highlight their potential for immunotherapy and targeting of the HIV reservoirs.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Humanos , Memória Imunológica , Tonsila Palatina , Receptores CXCR5 , Infecções por HIV/tratamento farmacológico
2.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33848273

RESUMO

T cell immunity is essential for the control of tuberculosis (TB), an important disease of the lung, and is generally studied in humans using peripheral blood cells. Mounting evidence, however, indicates that tissue-resident memory T cells (Trms) are superior at controlling many pathogens, including Mycobacterium tuberculosis (M. tuberculosis), and can be quite different from those in circulation. Using freshly resected lung tissue, from individuals with active or previous TB, we identified distinct CD4+ and CD8+ Trm-like clusters within TB-diseased lung tissue that were functional and enriched for IL-17-producing cells. M. tuberculosis-specific CD4+ T cells producing TNF-α, IL-2, and IL-17 were highly expanded in the lung compared with matched blood samples, in which IL-17+ cells were largely absent. Strikingly, the frequency of M. tuberculosis-specific lung T cells making IL-17, but not other cytokines, inversely correlated with the plasma IL-1ß levels, suggesting a potential link with disease severity. Using a human granuloma model, we showed the addition of either exogenous IL-17 or IL-2 enhanced immune control of M. tuberculosis and was associated with increased NO production. Taken together, these data support an important role for M. tuberculosis-specific Trm-like, IL-17-producing cells in the immune control of M. tuberculosis in the human lung.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-17/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Linfócitos T CD4-Positivos/patologia , Feminino , Humanos , Interleucina-1beta/imunologia , Interleucina-2/imunologia , Pulmão/patologia , Masculino , Óxido Nítrico/imunologia , Tuberculose Pulmonar/patologia
3.
Nature ; 570(7762): 528-532, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168092

RESUMO

Tuberculosis is the leading cause of death by an infectious disease worldwide1. However, the involvement of innate lymphoid cells (ILCs) in immune responses to infection with Mycobacterium tuberculosis (Mtb) is unknown. Here we show that circulating subsets of ILCs are depleted from the blood of participants with pulmonary tuberculosis and restored upon treatment. Tuberculosis increased accumulation of ILC subsets in the human lung, coinciding with a robust transcriptional response to infection, including a role in orchestrating the recruitment of immune subsets. Using mouse models, we show that group 3 ILCs (ILC3s) accumulated rapidly in Mtb-infected lungs and coincided with the accumulation of alveolar macrophages. Notably, mice that lacked ILC3s exhibited a reduction in the accumulation of early alveolar macrophages and decreased Mtb control. We show that the C-X-C motif chemokine receptor 5 (CXCR5)-C-X-C motif chemokine ligand 13 (CXCL13) axis is involved in Mtb control, as infection upregulates CXCR5 on circulating ILC3s and increases plasma levels of its ligand, CXCL13, in humans. Moreover, interleukin-23-dependent expansion of ILC3s in mice and production of interleukin-17 and interleukin-22 were found to be critical inducers of lung CXCL13, early innate immunity and the formation of protective lymphoid follicles within granulomas. Thus, we demonstrate an early protective role for ILC3s in immunity to Mtb infection.


Assuntos
Imunidade Inata/imunologia , Linfócitos/classificação , Linfócitos/imunologia , Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Animais , Quimiocina CXCL13/imunologia , Feminino , Granuloma/imunologia , Granuloma/patologia , Humanos , Interleucina-17/imunologia , Interleucinas/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfócitos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Receptores CXCR5/imunologia , Transcriptoma/genética , Tuberculose Pulmonar/genética , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA