Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851040

RESUMO

During the COVID-19 pandemic, governments in many countries worldwide, including India, imposed several restriction measures, including lockdowns, to prevent the spread of the infection. COVID-19 lockdowns led to a reduction in gaseous and particulate pollutants in ambient air. In the present study, we investigated the substantial changes in selected volatile organic compounds (VOCs) after the outbreak of the coronavirus pandemic and associations with health risk assessments in industrial areas. VOC data from 1 January 2019 to 31 December 2021 were collected from the Central Pollution Control Board (CPCB) website, to identify percentage changes in VOC levels before, during, and after COVID-19. The mean TVOC levels at all monitoring stations were 47.22 ± 30.15, 37.19 ± 37.19, and 32.81 ± 32.81 µg/m3 for 2019, 2020, and 2021, respectively. As a result, the TVOC levels gradually declined in consecutive years due to the pandemic in India. The mean TVOC levels at all monitoring stations declined from 9 to 61% during the pandemic period as compared with the pre-pandemic period. In the current study, the T/B ratio values ranged from 2.16 (PG) to 26.38 (NL), which indicated that the major pollutant contributors were traffic and non-traffic sources during the pre-pandemic period. The present findings indicated that TVOC levels had positive but low correlations with SR, BP, RF, and WD, with correlation coefficients (r) of 0.034, 0.118, 0.012, and 0.007, respectively, whereas negative correlations were observed with AT and WS, with correlation coefficients (r) of -0.168 and -0.150, respectively. The lifetime cancer risk (LCR) value for benzene was reported to be higher in children, followed by females and males, for the pre-pandemic, pandemic, and post-pandemic periods. A nationwide scale-up of this study's findings might be useful in formulating future air pollution reduction policies associated with a reduction in health risk factors. Furthermore, the present study provides baseline data for future studies on the impacts of anthropogenic activities on the air quality of a region.

2.
J Atmos Chem ; 80(1): 53-76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35992767

RESUMO

A novel coronavirus has affected almost all countries and impacted the economy, environment, and social life. The short-term impact on the environment and human health needs attention to correlate the Volatile organic compounds (VOCs) and health assessment for pre-, during, and post lockdowns. Therefore, the current study demonstrates VOC changes and their effect on air quality during the lockdown. The findings of result, the levels of the mean for total VOC concentrations were found to be 15.45 ± 21.07, 2.48 ± 1.61, 19.25 ± 28.91 µg/m3 for all monitoring stations for pre-, during, and post lockdown periods. The highest value of TVOCs was observed at Thane, considered an industrial region (petroleum refinery), and the lowest at Bandra, which was considered a residential region, respectively. The VOC levels drastically decreased by 52%, 89%, 80%, and 97% for benzene, toluene, ethylbenzene, and m-xylene, respectively, during the lockdown period compared to the previous year. In the present study, the T/B ratio was found lower in the lockdown period as compared to the pre-lockdown period. This can be attributed to the complete closure of non-traffic sources such as industries and factories during the lockdown. The Lifetime Cancer Risk values for all monitoring stations for benzene for pre-and-post lockdown periods were higher than the prescribed value, except during the lockdown period. Supplementary Information: The online version contains supplementary material available at 10.1007/s10874-022-09440-5.

3.
Front Public Health ; 10: 1070663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703843

RESUMO

Introduction: The concentrations of particulate and gaseous Polycyclic Hydrocarbons Carbon (PAHs) were determined in the urban atmosphere of Delhi in different seasons (winter, summer, and monsoon). Methodology: The samples were collected using instrument air metric (particulate phase) and charcoal tube (gaseous phase) and analyzed through Gas chromatography. The principal component and correlation were used to identify the sources of particulate and gaseous PAHs during different seasons. Results and discussion: The mean concentration of the sum of total PAHs (TPAHs) for particulate and gaseous phases at all the sites were found to be higher in the winter season (165.14 ± 50.44 ng/m3 and 65.73 ± 16.84 ng/m3) than in the summer season (134.08 ± 35.0 ng/m3 and 43.43 ± 9.59 ng/m3), whereas in the monsoon season the concentration was least (68.15 ± 18.25 ng/m3 and 37.63 1 13.62 ng/m3). The principal component analysis (PCA) results revealed that seasonal variations of PAHs accounted for over 86.9%, 84.5%, and 94.5% for the summer, monsoon, and winter seasons, respectively. The strong and positive correlation coefficients were observed between B(ghi)P and DahA (0.922), B(a)P and IcdP (0.857), and B(a)P and DahA (0.821), which indicated the common source emissions of PAHs. In addition to this, the correlation between Nap and Flu, Flu and Flt, B(a)P, and IcdP showed moderate to high correlation ranging from 0.68 to 0.75 for the particulate phase PAHs. The carcinogenic health risk values for gaseous and particulate phase PAHs at all sites were calculated to be 4.53 × 10-6, 2.36 × 10-5 for children, and 1.22 × 10-5, 6.35 × 10-5 for adults, respectively. The carcinogenic health risk for current results was found to be relatively higher than the prescribed standard of the Central Pollution Control Board, India (1.0 × 10-6).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Criança , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Atmosfera/análise , Atmosfera/química , Carcinógenos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Adulto
4.
J Hazard Mater ; 275: 55-62, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24857892

RESUMO

This study investigates the levels of ozone concentration along with an ultraviolet (UV) and visible spectral radiation at eight photocopy centers in an academic institute, Delhi. Sampling was done in two types of locations, i.e., basement photocopy centers (BPC) and ground floor photocopy centers (GPC) for 8h. Measurements of levels of ozone, UV and visible radiation were done by ozone analyzer, UV radiometer and Field spectra instrument, respectively. Results show that the hourly mean concentration of ozone was observed to be in the range of 1.8-10.0 ppb and 5.3-45.8 ppb for BPC and GPC, respectively. In terms UV radiations, energy lies between 5.0×10(-3) and 7.0×10(-3) mW/cm(2) for ultraviolet A (UVA), 1.0×10(-3) and 2.0×10(-3) mW/cm(2) for ultraviolet B (UVB) and 6.0×10(-3) and 8.0×10(-3) mW/cm(2) for ultraviolet C (UVC). Correlation between the UV radiations and ozone production observed was statistically insignificant. To know the health hazard occurred to the workers, the standard erythema dose (SED) value was calculated for emitting UV radiation. The SED was estimated to be in the range of 0.02-0.04 and 0.02-0.32 for direct and indirect methods which is less than the guideline prescribed by Commission Internationale del' Eclairage (CIE). In nutshell, person involved in photocopy operation for their livelihood must be trained and should have knowledge for the long term gradual build up health problems due to ozone and UV production from photocopier. The manufactures should be ultimated with the significant ozone production, so that photocopier machine can be redesigned.


Assuntos
Poluentes Ocupacionais do Ar/análise , Equipamentos e Provisões Elétricas , Exposição por Inalação/análise , Ozônio/análise , Raios Ultravioleta , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Impressão , Doses de Radiação , Medição de Risco
5.
Environ Sci Pollut Res Int ; 21(3): 2240-2248, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24046229

RESUMO

The present work investigated the levels of total volatile organic compounds (TVOC) and benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX) in different microenvironments in the library of Jawaharlal Nehru University in summer and winter during 2011-2012. Carcinogenic and non-carcinogenic health risks due to organic compounds were also evaluated using US Environmental Protection Agency (USEPA) conventional approaches. Real-time monitoring was done for TVOC using a data-logging photo-ionization detector. For BTEX measurements, the National Institute for Occupational Safety and Health (NIOSH) standard method which consists of active sampling of air through activated charcoal, followed by analysis with gas chromatography, was performed. Simultaneously, outdoor measurements for TVOC and BTEX were carried out. Indoor concentrations of TVOC and BTEX (except benzene) were higher as compared to the outdoor for both seasons. Toluene and m/p-xylene were the most abundant organic contaminant observed in this study. Indoor to outdoor (I/O) ratios of BTEX compounds were generally greater than unity and ranged from 0.2 to 8.7 and 0.2 to 4.3 in winter and summer, respectively. Statistical analysis and I/O ratios showed that the dominant pollution sources mainly came from indoors. The observed mean concentrations of TVOC lie within the second group of the Molhave criteria of indoor air quality, indicating a multifactorial exposure range. The estimated lifetime cancer risk (LCR) due to benzene in this study exceeded the value of 1 × 10(-6) recommended by USEPA, and the hazard quotient (HQ) of non-cancer risk came under an acceptable range.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Compostos Orgânicos Voláteis/análise , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental/métodos , Humanos , Índia , Bibliotecas , Estações do Ano , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA