Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005285

RESUMO

Circular RNAs are a novel class of RNA transcripts, which regulate important cellular functions in health and disease. Herein, we report on the functional relevance of the circPCMTD1 transcript in acute leukemias. In screening experiments, we found that circPCMTD1 depletion strongly inhibited the proliferative capacity of leukemic cells with BCR-ABL translocations. Mass cytometry experiments identified the aberrant activation of the DNA damage response as an early downstream event of circPCMTD1 depletion. In in vivo experiments, circPCMTD1 targeting prolonged the survival of mice engrafted with leukemic blasts harboring the Philadelphia chromosome. Mechanistically, we found that circPCMTD1 was enriched in the cytoplasm and associated with the ribosomes of the leukemic cells. We detected a cryptic open reading frame within the circPCMTD1 sequence and found that circPCMTD1 could generate a peptide product. The circPCMTD 1-derived peptide interacted with proteins of the BTR complex and enhanced BTR complex formation, thereby increasing tolerance to genotoxic stress.

2.
J Biol Chem ; 298(11): 102592, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244451

RESUMO

Nonsense-mediated mRNA decay (NMD) is a quality control pathway in eukaryotes that continuously monitors mRNA transcripts to ensure truncated polypeptides are not produced. The expression of many normal mRNAs that encode full-length polypeptides is also regulated by this pathway. Such transcript surveillance by NMD is intimately linked to translation termination. When a ribosome terminates translation at a normal termination codon, NMD is not activated, and mRNA can undergo repeated rounds of translation. On the other hand, when translation termination is deemed abnormal, such as that on a premature termination codon, it leads to a series of poorly understood events involving the NMD pathway, which destabilizes the transcript. In this review, we summarize our current understanding of how the NMD machinery interfaces with the translation termination factors to initiate NMD. We also discuss a variety of cis-acting sequence contexts and trans-acting factors that can cause readthrough, ribosome reinitiation, or ribosome frameshifting at stop codons predicted to induce NMD. These alternative outcomes can lead to the ribosome translating downstream of such stop codons and hence the transcript escaping NMD. NMD escape via these mechanisms can have wide-ranging implications on human health, from being exploited by viruses to hijack host cell systems to being harnessed as potential therapeutic possibilities to treat genetic diseases.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos , Humanos , Códon de Terminação/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
EMBO J ; 41(10): e109202, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35451102

RESUMO

Nonsense-mediated mRNA decay (NMD) is governed by the three conserved factors-UPF1, UPF2, and UPF3. While all three are required for NMD in yeast, UPF3B is dispensable for NMD in mammals, and its paralog UPF3A is suggested to only weakly activate or even repress NMD due to its weaker binding to the exon junction complex (EJC). Here, we characterize the UPF3A/B-dependence of NMD in human cell lines deleted of one or both UPF3 paralogs. We show that in human colorectal cancer HCT116 cells, NMD can operate in a UPF3B-dependent and -independent manner. While UPF3A is almost dispensable for NMD in wild-type cells, it strongly activates NMD in cells lacking UPF3B. Notably, NMD remains partially active in cells lacking both UPF3 paralogs. Complementation studies in these cells show that EJC-binding domain of UPF3 paralogs is dispensable for NMD. Instead, the conserved "mid" domain of UPF3 paralogs is consequential for their NMD activity. Altogether, our results demonstrate that the mammalian UPF3 proteins play a more active role in NMD than simply bridging the EJC and the UPF complex.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Ligação a RNA , Éxons , Células HCT116 , Humanos , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Transativadores/metabolismo
6.
Nat Commun ; 10(1): 5351, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767858

RESUMO

Long non-coding RNAs (lncRNAs) are important regulatory molecules that are implicated in cellular physiology and pathology. In this work, we dissect the functional role of the HOXB-AS3 lncRNA in patients with NPM1-mutated (NPM1mut) acute myeloid leukemia (AML). We show that HOXB-AS3 regulates the proliferative capacity of NPM1mut AML blasts in vitro and in vivo. HOXB-AS3 is shown to interact with the ErbB3-binding protein 1 (EBP1) and guide EBP1 to the ribosomal DNA locus. Via this mechanism, HOXB-AS3 regulates ribosomal RNA transcription and de novo protein synthesis. We propose that in the context of NPM1 mutations, HOXB-AS3 overexpression acts as a compensatory mechanism, which allows adequate protein production in leukemic blasts.


Assuntos
Leucemia Mieloide/genética , Mutação , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , RNA Ribossômico/genética , Transcrição Gênica , Doença Aguda , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Células K562 , Leucemia Mieloide/patologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Nucleofosmina , Biossíntese de Proteínas/genética , Células THP-1 , Transplante Heterólogo
7.
Cell Rep ; 25(9): 2431-2446.e7, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30466796

RESUMO

The exon junction complex (EJC) deposited upstream of mRNA exon junctions shapes structure, composition, and fate of spliced mRNA ribonucleoprotein particles (mRNPs). To achieve this, the EJC core nucleates assembly of a dynamic shell of peripheral proteins that function in diverse post-transcriptional processes. To illuminate consequences of EJC composition change, we purified EJCs from human cells via peripheral proteins RNPS1 and CASC3. We show that the EJC originates as an SR-rich mega-dalton-sized RNP that contains RNPS1 but lacks CASC3. Sometime before or during translation, the EJC undergoes compositional and structural remodeling into an SR-devoid monomeric complex that contains CASC3. Surprisingly, RNPS1 is important for nonsense-mediated mRNA decay (NMD) in general, whereas CASC3 is needed for NMD of only select mRNAs. The switch to CASC3-EJC slows down NMD. Overall, the EJC compositional switch dramatically alters mRNP structure and specifies two distinct phases of EJC-dependent NMD.


Assuntos
Éxons/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Ribonucleoproteínas/química , Animais , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrodinâmica , Cinética , Camundongos , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo
8.
RNA ; 23(3): 270-283, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994090

RESUMO

Introns are found in 5' untranslated regions (5'UTRs) for 35% of all human transcripts. These 5'UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5'UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5'UTR intron status, we developed a classifier that can predict 5'UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5' proximal-intron-minus-like-coding regions ("5IM" transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5' cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5' proximal positions. Finally, N1-methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5' proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N1-methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC.


Assuntos
Regiões 5' não Traduzidas , Adenosina/análogos & derivados , Sequência de Bases , Íntrons , Biossíntese de Proteínas , Deleção de Sequência , Adenosina/genética , Adenosina/metabolismo , Códon de Iniciação/química , Códon de Iniciação/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Éxons , Humanos , Fases de Leitura Aberta , Ligação Proteica , Ribossomos/genética , Ribossomos/metabolismo
9.
Mol Cell ; 27(5): 780-92, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17803942

RESUMO

The nonsense-mediated mRNA decay (NMD) pathway rids eukaryotic cells of mRNAs with premature termination codons. There is contradictory evidence as to whether mammalian NMD is a nuclear or a cytoplasmic process. Here, we show evidence that NMD in human cells occurs primarily, if not entirely, in the cytoplasm. Polypeptides designed to inhibit interactions between NMD factors specifically impede NMD when exogenously expressed in the cytoplasm. However, restricting the polypeptides to the nucleus strongly impairs their NMD-inhibitory function, even for those intended to inhibit interactions between the exon-junction complex (EJC) and hUpf3 proteins, which localize primarily in the nucleus. NMD substrates classified based on cell fractionation assays as "nucleus associated" or "cytoplasmic" are all inhibited in the same manner. Furthermore, retention of the NMD factor hUpf1 in the nucleus strongly impairs NMD. These observations suggest that the hUpf complex communicates with the EJC and triggers NMD in the cytoplasm.


Assuntos
Códon sem Sentido , Citoplasma/metabolismo , Estabilidade de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Éxons , Humanos , Modelos Genéticos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , RNA Helicases , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Transdução de Sinais , Transativadores/química , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA