Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Alzheimers Dis Rep ; 8(1): 981-998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114548

RESUMO

Background: The APP/PS1 mouse model recapitulates pathology of human Alzheimer's disease (AD). While amyloid-ß peptide deposition and neurodegeneration are features of AD, the pathology may involve inflammation and impaired vascular regeneration. Objective: This study evaluated inflammatory environments in the brain and bone marrow (BM), and the impact on brain microvascular density. Methods: BM and frontal cortex from male nine-month-old APP/PS1 or the control C57Bl6/j mice were studied. Vascular density and inflammatory cells were evaluated in the sections of frontal cortex by immunohistochemistry. Different subsets of hematopoietic stem/progenitor cells (BM) and monocyte-macrophages were characterized by flow cytometry and by clonogenic assays. Myelopoietic or inflammatory factors were evaluated by real-time RT-PCR or by western blotting. Results: CD34+ or CD31+ vascular structures were lower (p < 0.01, n = 6) in the frontal cortex that was associated with decreased number of Lin-Sca-1+cKit+ vasculogenic progenitor cells in the BM and circulation (p < 0.02, n = 6) compared to the control. Multipotent progenitor cells MPP4, common lymphoid, common myeloid and myeloid progenitor cells were higher in the APP/PS1-BM compared to the control, which agreed with increased numbers of monocytes and pro-inflammatory macrophages. The expression of pro-myelopoietic factors and alarmins was higher in the APP/PS1 BM-HSPCs or in the BM-supernatants compared to the control. Frontal cortices of APP/PS1 mice showed higher number of pro-inflammatory macrophages (CD11b+F4/80+ or CD80+) and microglia (OX42+Iba1+). Conclusions: These findings show that AD pathology in APP/PS1 mice is associated with upregulated myelopoiesis, which contributes to the brain inflammation and decreased vascularity.

2.
ACS Appl Bio Mater ; 7(6): 4162-4174, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38769764

RESUMO

The escalating threat of antimicrobial resistance has become a global health crisis. Therefore, there is a rising momentum in developing biomaterials with self-sanitizing capabilities and inherent antibacterial properties. Despite their promising antimicrobial properties, metal nanoparticles (MNPs) have several disadvantages, including increased toxicity as the particle size decreases, leading to oxidative stress and DNA damage that need consideration. One solution is surface functionalization with biocompatible organic ligands, which can improve nanoparticle dispersibility, reduce aggregation, and enable targeted delivery to microbial cells. The existing research predominantly concentrates on the advancement of peptide-based hydrogels for coating materials to prevent bacterial infection, with limited exploration of developing surface coatings using organogels. Herein, we have synthesized organogel-based coatings doped with MNPs that can offer superior hydrophobicity, oleophobicity, and high stability that are not easily achievable with hydrogels. The self-assembled gels displayed distinct morphologies, as revealed by scanning electron microscopy and atomic force microscopy. The cross-linked matrix helps in the controlled and sustained release of MNPs at the site of bacterial infection. The synthesized self-assembled gel@MNPs exhibited excellent antibacterial properties against harmful bacteria such as Escherichia coli and Staphylococcus aureus and reduced bacterial viability up to 95% within 4 h. Cytotoxicity testing against metazoan cells demonstrated that the gels doped with MNPs were nontoxic (IC50 > 100 µM) to mammalian cells. Furthermore, in this study, we coated the organogel@MNPs on cotton fabric and tested it against Gram +ve and Gram -ve bacteria. Additionally, the developed cotton fabric exhibited superhydrophobic properties and developed a barrier that limits the interaction between bacteria and the surface, making it difficult for bacteria to adhere and colonize, which holds potential as a valuable resource for self-cleaning coatings.


Assuntos
Antibacterianos , Cobre , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Cobre/química , Cobre/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Géis/química
3.
J Food Sci Technol ; 61(3): 459-470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327859

RESUMO

The bioactive components of microbial origin have been extensively applied to restrict the enormous enzyme-catalyzed processes. Hence, the present study was executed to explore the α -amylase inhibition (AAI) potential of glycoprotein isolated from Lactobacillus delbrueckii (LGp) to regulate in vitro starch hydrolysis. As a non-competitive inhibitor, the protein exhibited AAI (85%) with, IC50 135 ± 0.55 µg/mL. It was stable over a broad range of pH (3-11) and temperature (25-75 °C). Furthermore, LGp was significantly effective against amylase and starch from different sources. In addition, it also exhibited antioxidant and emulsifying potential. The UV, FT-IR and fluorescence analysis affirm the alterations in amylase molecular conformation after interaction with the LGp inhibitor. These results provide a substantial basis for the future use of LGp for controlled starch hydrolysis in vitro and as an antioxidant and emulsifying agent in the food industry.

4.
Int J Mol Sci ; 24(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37629200

RESUMO

Chitosan-based polymeric micelles are promising non-viral nanocarriers for safe and targeted gene delivery. Multi-functionalized chitosan polymeric micelles were prepared by grafting fatty acid, cell-penetrating peptide, and mannose on the chitosan backbone. The polymeric micelles were subjected to surface morphology and surface topography using scanning electron microscopy and atomic force microscopy, respectively. The hemotoxic profile of the prepared polymeric micelles was established against erythrocytes and was found to be <5% hemotoxic up to the concentration of 600 µg/mL. In vitro ApoE2 expression in primary astrocytes and neurons was analyzed. Multi-functionalized polymeric micelles produced greater (p < 0.05) transfection in astrocytes and neurons in comparison to mono-functionalized micelles. Intranasal administration of polymeric micelles/pApoE2 polyplex led to significantly higher (p < 0.05) in vivo pApoE2 expression than chitosan and unfunctionalized polymeric micelles-treated mice groups. The outcomes of this study predict that the developed multi-functionalized polymeric micelles could be an effective and safe gene delivery platform to the brain through the intranasal route.


Assuntos
Quitosana , Animais , Camundongos , Administração Intranasal , Apolipoproteína E2 , Micelas , Encéfalo , Polímeros
5.
Mol Pharm ; 20(6): 3009-3019, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37093958

RESUMO

Multifunctionalized Chitosan-based polymeric micelles were used to deliver pVGF to the brain. VGF (non-acronymic) plays significant roles in neurogenesis and learning as well as synaptic and cognitive functions. Therefore, VGF gene therapy could be a better approach in developing effective therapeutics against Alzheimer's disease. Multifunctionalized chitosan polymeric micelles were developed by grafting oleic acid (OA) on the chitosan (CS) skeleton followed by penetratin (PEN) and mannose (MAN) conjugation. The OA-g-CS-PEN-MAN graft polymer formed cationic nanomicelles in an aqueous medium and polyplexed with pVGF. The polymeric micelles were nontoxic and cationic in charge and had an average hydrodynamic diameter of 199.8 ± 15.73 nm. Qualitative in vitro transfection efficiency of OA-g-CS-PEN-MAN/pGFP polyplex was investigated in bEnd.3, primary neurons, and astrocyte cells. In vivo transfection efficiency of OA-g-CS-PEN-MAN/pVGF polyplexes was analyzed in C57BL6/J mice after intranasal administration for 7 days. The VGF expression levels in primary astrocytes and neurons after OA-g-CS-PEN-MAN/pVGF treatment were 2.4 ± 0.24 and 1.49 ± 0.02 pg/µg of protein, respectively. The VGF expression in the OA-g-CS-PEN-MAN/pVGF polyplex-treated animal group was 64.9 ± 12.7 pg/mg of protein, significantly higher (p < 0.01) than that of the unmodified polymeric micelles. The in vivo transfection outcomes revealed that the developed multifunctionalized OA-g-CS-PEN-MAN polymeric micelles could effectively deliver pVGF to the brain, transfect brain cells, and express VGF in the brain after noninvasive intranasal administration.


Assuntos
Doença de Alzheimer , Quitosana , Camundongos , Animais , Micelas , Quitosana/metabolismo , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Polímeros/metabolismo , Encéfalo/metabolismo , Ácido Oleico/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768536

RESUMO

Hypertension is a major health concern globally. Elevated blood pressure, initiated and maintained by the brain, is defined as neurogenic hypertension (NH), which accounts for nearly half of all hypertension cases. A significant increase in angiotensin II-mediated sympathetic nervous system activity within the brain is known to be the key driving force behind NH. Blood pressure control in NH has been demonstrated through intracerebrovascular injection of agents that reduce the sympathetic influence on cardiac functions. However, traditional antihypertensive agents lack effective brain permeation, making NH management extremely challenging. Therefore, developing strategies that allow brain-targeted delivery of antihypertensives at the therapeutic level is crucial. Targeting nanotherapeutics have become popular in delivering therapeutics to hard-to-reach regions of the body, including the brain. Despite the frequent use of nanotherapeutics in other pathological conditions such as cancer, their use in hypertension has received very little attention. This review discusses the underlying pathophysiology and current management strategies for NH, as well as the potential role of targeted therapeutics in improving current treatment strategies.


Assuntos
Barreira Hematoencefálica , Hipertensão , Humanos , Pressão Sanguínea , Encéfalo/fisiologia , Anti-Hipertensivos/farmacologia
7.
Biomedicines ; 10(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203704

RESUMO

Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood-brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain. In vitro pVGF expression was analyzed in bEnd.3 cells, primary astrocytes, and neurons. Comparative in-vivo pVGF expression was analyzed to evaluate the effective route of administration between intranasal and intravenous. Biocompatible, multifunctional polymeric micelles were prepared, having an average size of 200 nm, and cationic zeta potential. Modified polymers were found to be hemo- and cyto-compatible. When transfected with the different modified chitosan formulations, significantly (p < 0.05) higher VGF expression was observed in primary astrocytes and neurons using the mannose, Tat peptide, and oleic acid grafted chitosan polymer. Compared to intravenous administration, intranasal administration of pVGF in polyplex formulation led to significantly (p < 0.05) higher pVGF expression. Developed multifunctional polymeric micelles were an effective pVGF delivery platform to the brain. Mannose and Tat ligand tagging improved the pVGF delivery to the brain.

8.
J Virol Methods ; 302: 114474, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077721

RESUMO

Chilli leaf curl disease caused by whitefly transmitted begomoviruses is an important constraint to chilli (Capsicum anuum L.) cultivation in India. Tomato leaf curl Joydebpur virus (ToLCJoV) was characterized and identified as incitant of leaf curl disease through rolling circle amplification (RCA) and PCR assay from the symptomatic samples collected from Uttar Pradesh, India. Although PCR assay provides the gold standard in diagnostics, this method consumes more time and requires convenient portable instruments. Therefore, a loop-mediated isothermal amplification (LAMP) assay was developed for the detection of ToLCJoV by targeting the AC1 and AC2 region. Detection has been achieved through a laddered pattern of amplification in agarose gel electrophoresis. The assay has detected ToLCJoV in a total DNA concentration of 1 × 10-1 ng indicating 200-fold higher sensitivity than that of the PCR. Further, the replacement of total DNA with leaf extracts using the grinding buffer and GES buffer coupled with LAMP assay also detected the presence of ToLCJoV in the infected chilli samples. With this assay, ToLCJoV can be detected in less than 2 h without DNA extraction. Besides, this assay will be highly useful in discriminating the leaf curl disease etiology by ToLCJoV from other begomoviruses and insects (thrips and mites). To the best of our knowledge, this is the first report of a LAMP assay for the detection of ToLCJoV.


Assuntos
Begomovirus , Solanum lycopersicum , Viroses , Begomovirus/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Nicotiana
9.
Microsc Res Tech ; 85(4): 1371-1391, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34843138

RESUMO

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a serious polyphagous pest of various field and horticultural crops. A complete knowledge on the morphological features of antennal sensory structures is essential for efficient semiochemical-based control methods. The external structure and distribution of antennal sensilla in male and female adults of H. armigera were investigated using scanning electron microscopy. Eight distinct morphological types of sensilla were identified in both sexes: sensilla trichodea, sensilla basiconica, sensilla auricillica, sensilla coeloconica (multiporous), sensilla chaetica (uniporous), sensilla styloconica, sensilla squamiformia, and Böhm sensilla (aporous) in varying numbers and distribution along the length of the antennae. Of these sensilla, the most widespread are sensilla trichodea and sensilla basiconica on the antennae of both sexes. Female antennae have comparatively greater number of sensilla trichodea than male antennae. Among eight types of sensilla, sensilla basiconica, auricillica, styloconica type II, squamiformia, and Böhm sensilla were identified and reported for the first time in H. armigera. Sexual dimorphism in H. armigera was mainly detected as the variations in sensilla shape, numbers, and distribution of each type of sensilla. The sexual difference was observed in the numbers of sensilla coeloconica, chaetica, styloconica, and squamiformia per flagellomere. The possible functions of these sensilla were discussed in view of previously reported lepidopteran insects. The findings provide fundamental information on the morphology and distribution of antennal sensory structures in H. armigera. It would be useful for further detailed studies on physiological and behavioral function of each sensillum type and helpful for formulating related pest control methods.


Assuntos
Mariposas , Sensilas , Animais , Antenas de Artrópodes/anatomia & histologia , Feminino , Masculino , Microscopia Eletrônica de Varredura , Mariposas/anatomia & histologia , Feromônios , Sensilas/anatomia & histologia , Caracteres Sexuais
10.
Environ Sci Pollut Res Int ; 29(4): 6000-6009, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34431059

RESUMO

Cadmium (Cd) metal extraction through efficient plant roots has attracted much attention as this methodology is environment-friendly and cost-effective. Brassica species are well known for their tolerance towards high Cd concentration in contaminated soils. The tolerance ability may vary among species; hence the assessment of this variability is mandatory for selecting Brassica species. For this purpose, a greenhouse pot experiment was carried out using three Brassica species (Brassica juncea L., Brassica campestris L., and Brassica napus L.). To evaluate the effect of chelating agent ethylenediamine tetraacetic acid (EDTA) on Cd uptake, EDTA (0, 1, and 2 g kg-1 soil) was supplemented along with Cd (0, 5, 10, 20, 40, and 80 mg kg-1 soil). Among different species, B. juncea possessed the highest root dry biomass and lowest root Cd concentration in untreated soil. Overall root dry biomass of all tested Brassica species reduced on increasing Cd and EDTA levels. The trend was appeared to be related to an increase in root Cd concentration on the supplementation of EDTA that formed a complex with the target metal contaminate and resulted in vacuolar sequestration. Roots of B. juncea showed maximum Cd accumulation and highest values at Cd and EDTA levels up to 20 mg kg-1 and 1 g kg-1 soil due to the combined effect of root biomass and Cd concentration in roots. Thus, present findings inferred that Cd and EDTA supplementation might prove as a feasible strategy to improve remediation of Cd-polluted soil using B. juncea as an efficient Cd accumulator.


Assuntos
Cádmio , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Suplementos Nutricionais , Ácido Edético , Mostardeira , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
11.
Plant Dis ; 105(9): 2595-2600, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33393356

RESUMO

Whitefly (Bemisia tabaci)-transmitted begomoviruses cause severe diseases in numerous economically important dicotyledonous plants. Okra enation leaf curl disease (OELCuD) has emerged as a serious threat to okra (Abelmoschus esculentus L. Moench) cultivation in the Indian subcontinent. This study reports the association of a monopartite begomovirus (bhendi yellow vein mosaic virus; BYVMV) and betasatellite (bhendi yellow vein mosaic betasatellite; BYVB) with OELCuD in the Mau region of Uttar Pradesh, India. The BYVMV alone inoculated Nicotiana benthamiana and A. esculentus cv. Pusa Sawani plants developed mild symptoms. Co-inoculation of BYVMV and BYVB resulted in a reduced incubation period, an increased symptom severity, and an enhanced BYVMV accumulation by Southern hybridization and quantitative real-time PCR. This is the first study that satisfies Koch's postulates for OELCuD in its natural host. Activities of various antioxidative enzymes were significantly increased in the virus-inoculated okra plants. Differential responses in various biochemical components (such as photosynthetic pigments, phenol, proline, and sugar) in diseased okra plants were observed. This change in phytochemical responses is significant in understanding its impact on virus pathogenesis and disease development.


Assuntos
Abelmoschus , Begomovirus , Abelmoschus/genética , Begomovirus/genética , DNA Viral , Filogenia , Compostos Fitoquímicos , Doenças das Plantas
12.
Nanomedicine ; 33: 102357, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460779

RESUMO

Obesity induced chronic low-level inflammation is strongly associated with the development of insulin resistance and progression of type-2 diabetes. Systemic treatment with anti-inflammatory therapeutics requires high doses and is associated with serious adverse effects owing to generalized suppression of the immune system. Here we study localized knockdown of pro-inflammatory adipocytokines in adipose tissue macrophages (ATMs) and adipocytes using RNA interference for the treatment of insulin resistance. Chitosan nanomicelles conjugated to ATM and adipocyte targeting ligands were used to transfect short hairpin RNA (shRNA) against tumor necrosis factor-α (TNFα) and monocyte chemoattractant protein-1 (MCP-1). Subcutaneous administration of nanomicellar/pDNA polyplexes in obese-diabetic mice resulted in decreased concentration of pro-inflammatory cytokines TNFα, MCP-1, IL-6, and IL-1ß along with increased concentration of insulin-sensitizing adipokine adiponectin. Downregulation of inflammatory cytokines resulted in improved insulin sensitivity and glucose tolerance for up to six-weeks following single dose, compared to untreated obese-diabetic mice.


Assuntos
Adipocinas/metabolismo , Quitosana/química , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Nanopartículas/química , Obesidade/metabolismo , Adipócitos/metabolismo , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Materiais Biocompatíveis/química , Quitosana/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental , Teste de Tolerância a Glucose , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Células RAW 264.7 , Interferência de RNA , Fator de Necrose Tumoral alfa/metabolismo
13.
Bioeng Transl Med ; 5(2): e10150, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440558

RESUMO

Obesity-associated type 2 diabetes mellitus (T2DM) is characterized by low-grade chronic systemic inflammation that arises primarily from the white adipose tissue. The interplay between various adipose tissue-derived chemokines drives insulin resistance in T2DM and has therefore become a subject of rigorous investigation. The adipocytokines strongly associated with glucose homeostasis include tumor necrosis factor-α, various interleukins, monocyte chemoattractant protein-1, adiponectin, and leptin, among others. Remodeling the adipose tissue inflammasome in obesity-associated T2DM is likely to treat the underlying cause of the disease and bring significant therapeutic benefit. Various strategies have been adopted or are being investigated to modulate the serum/tissue levels of pro- and anti-inflammatory adipocytokines to improve glucose homeostasis in T2DM. These include use of small molecule agonists/inhibitors, mimetics, antibodies, gene therapy, and other novel formulations. Here, we discuss adipocytokines that are strongly associated with insulin activity and therapies that are under investigation for modulation of their levels in the treatment of T2DM.

14.
Int J Pharm ; 583: 119357, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32334065

RESUMO

Global rise in obesity-associated type 2 diabetes mellitus (T2DM) has led to a major healthcare crisis. Development of efficient treatments to treat the underlying chronic inflammation in obesity-associated T2DM, is an unmet medical need. To this end, we have developed a plasmid adiponectin (pADN) based nanomedicine for the treatment of insulin resistance in type 2 diabetes mellitus. Adiponectin is a potent anti-inflammatory/anti-diabetic adipokine, which is downregulated in obesity. In this study, nanomicelles comprising chitosan conjugated to oleic acid and adipose homing peptide (AHP) were developed to deliver pADN to adipocytes. Cationic chitosan-oleic-AHP micelles were 112 nm in size, encapsulated 93% of pADN and protected gene cargo from DNase I mediated enzymatic degradation. In vitro, the nanomicellar formulation significantly increased adiponectin production compared to free plasmid as well as standard transfecting agent FuGENE®HD. Single dose subcutaneous administration of pADN-chitosan-oleic-AHP to obese-diabetic rats, resulted in improved insulin sensitivity for up to 6 weeks, which matched the glucose disposal ability of healthy rats. Serum adiponectin level in pADN-chitosan-oleic-AHP treated rats was comparable to healthy rats for up to 3 weeks post treatment. Overall, the results indicate that pADN-chitosan-oleic-AHP based therapy is a promising treatment approach for obesity-associated T2DM.


Assuntos
Adiponectina/genética , Quitosana/administração & dosagem , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Resistência à Insulina , Nanopartículas/administração & dosagem , Ácido Oleico/administração & dosagem , Peptídeos/administração & dosagem , Células 3T3-L1 , Adiponectina/sangue , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/etiologia , Terapia Genética , Masculino , Camundongos , Obesidade/complicações , Obesidade/terapia , Plasmídeos , Ratos Wistar
15.
Nanomedicine ; 23: 102112, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669083

RESUMO

Combination therapy has emerged as an efficient way to deliver chemotherapeutics for treatment of glioblastoma. It provides collaborative approach of targeting cancer cells by acting via multiple mechanisms, thereby reducing drug resistance. However, the presence of impermeable blood brain barrier (BBB) restricts the delivery of chemotherapeutic drugs into the brain. To overcome this limitation, we designed a dual functionalized liposomes by modifying their surface with transferrin (Tf) and a cell penetrating peptide (CPP) for receptor and adsorptive mediated transcytosis, respectively. In this study, we used two different CPPs (based on physicochemical properties) and investigated the influence of insertion of CPP to Tf-liposomes on biocompatibility, cellular uptake, and transport across the BBB both in vitro and in vivo. The biodistribution profile of Tf-CPP liposomes showed more than 10 and 2.7 fold increase in doxorubicin and erlotinib accumulation in mice brain, respectively as compared to free drugs with no signs of toxicity.


Assuntos
Antineoplásicos , Barreira Hematoencefálica/metabolismo , Peptídeos Penetradores de Células , Doxorrubicina , Sistemas de Liberação de Medicamentos , Cloridrato de Erlotinib , Transferrina , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Barreira Hematoencefálica/patologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/farmacocinética , Cloridrato de Erlotinib/farmacologia , Feminino , Lipossomos , Masculino , Camundongos , Camundongos Nus , Transferrina/química , Transferrina/farmacocinética , Transferrina/farmacologia
16.
J Control Release ; 307: 247-260, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252036

RESUMO

Glioblastoma is a hostile brain tumor associated with high infiltration leading to poor prognosis. Anti-cancer chemotherapeutic agents have limited access into the brain due to the presence of the blood brain barrier (BBB). In this study, we designed a dual functionalized liposomal delivery system, surface modified with transferrin (Tf) for receptor mediated transcytosis and a cell penetrating peptide-penetratin (Pen) for enhanced cell penetration. We loaded doxorubicin and erlotinib into liposomes to enhance their translocation across the BBB to glioblastoma tumor. In vitro cytotoxicity and hemocompatibility studies demonstrated excellent biocompatibility for in vivo administration. Co-delivery of doxorubicin and erlotinib loaded Tf-Pen liposomes revealed significantly (p < 0.05) higher translocation (~15%) across the co-culture endothelial barrier resulting in regression of tumor in the in vitro brain tumor model. The biodistribution of Tf-Pen liposomes demonstrated ~12 and 3.3 fold increase in doxorubicin and erlotinib accumulation in mice brain, respectively compared to free drugs. In addition, Tf-Pen liposomes showed excellent antitumor efficacy by regressing ~90% of tumor in mice brain with significant increase in the median survival time (36 days) along with no toxicity. Thus, we believe that this study would have high impact for treating patients with glioblastoma.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Peptídeos Penetradores de Células/administração & dosagem , Doxorrubicina/administração & dosagem , Cloridrato de Erlotinib/administração & dosagem , Glioblastoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Transferrina/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacocinética , Doxorrubicina/farmacocinética , Cloridrato de Erlotinib/farmacocinética , Feminino , Glioblastoma/metabolismo , Humanos , Lipossomos , Masculino , Camundongos Nus , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Transferrina/farmacocinética
17.
Colloids Surf B Biointerfaces ; 173: 27-35, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261346

RESUMO

Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells. In vitro cytotoxicity and hemolysis studies were performed to assess biocompatibility of liposomal nanoparticles. Cellular uptake studies demonstrated efficient internalization of Dox and Erlo in U87, brain endothelial (bEnd.3), and glial cells. In addition, dual functionalized liposomes showed significantly (p < 0.05) higher apoptosis in U87 cells. Significantly (p < 0.05) higher translocation of dual functionalized liposomes across the BBB and delivering chemotherapeutic drugs to the glioblastoma tumor cells inside PLGA-Chitosan scaffold resulted in approximately 52% tumor cell death, using in vitro brain tumor model.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Cloridrato de Erlotinib/farmacologia , Lipossomos/química , Neuroglia/efeitos dos fármacos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Quitosana/química , Doxorrubicina/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Cloridrato de Erlotinib/química , Glioblastoma/irrigação sanguínea , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Lipossomos/metabolismo , Modelos Biológicos , Neuroglia/metabolismo , Neuroglia/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ligação Proteica , Receptores da Transferrina/metabolismo , Alicerces Teciduais , Transferrina/química , Transferrina/metabolismo
18.
J Pharm Sci ; 107(11): 2902-2913, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30055226

RESUMO

Drug delivery to the brain has been a major challenge due to the presence of the blood-brain barrier, which limits the uptake of most chemotherapeutics into brain. We developed a dual-functionalized liposomal delivery system, conjugating cell penetrating peptide penetratin to transferrin-liposomes (Tf-Pen-conjugated liposomes) to enhance the transport of an anticancer chemotherapeutic drug, 5-fluorouracil (5-FU), across the blood-brain barrier into the tumor cells. The in vitro cellular uptake study showed that the dual-functionalized liposomes are capable of higher cellular uptake in glioblastoma (U87) and brain endothelial (bEnd.3) cells monolayer. In addition, dual-functionalized liposomes demonstrated significantly higher apoptosis in U87 cells. The liposomal nanoparticles showed excellent blood compatibility and in vitro cell viability, as studied by hemolysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. The 5-FU-loaded dual-functionalized liposomes demonstrated higher transport across the brain endothelial barrier and delivered 5-FU to tumor cells inside poly(lactic-co-glycolic acid)-chitosan scaffold (an in vitro brain tumor model), resulting in significant tumor regression.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Fluoruracila/administração & dosagem , Glioblastoma/tratamento farmacológico , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Fluoruracila/farmacocinética , Fluoruracila/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Lipossomos
19.
3 Biotech ; 8(1): 20, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29276658

RESUMO

The present work reveals the potential of biosurfactant producing P. aeruginosa PBS for microbial enhanced oil recovery (MEOR). The biosurfactant production medium and culture conditions were optimized using response surface methodology. The optimization of media components and process parameters was consecutively executed in two sets of experimental runs designed by central composite rotatable design (CCRD). The maximum biosurfactant yield was attained with 2% fresh inoculum of P. aeruginosa PBS in minimal salt medium (pH 7), possessing 2.17% sodium citrate as C-source and 0.5% yeast extract as N-source, after 48 h upon incubation at 30 °C/150 rpm. Under optimum conditions, biosurfactant yield was increased more than threefold and turned out to be 2.65 g/L as compared to 0.82 g/L under previous conditions. The biosurfactant was characterized as a glycolipid comprising of four rhamnolipid homologs (RhaRhaC10C10, RhaRhaC8C10, RhaRhaC12C10/RhaRhaC10C12, RhaC10C10) by thin layer chromatography, fourier transform infrared spectroscopy, nuclear magnetic resonance and mass spectrometry. The produced biosurfactant was highly efficient for oil recovery application showing extreme reduction in surface tension of medium (71.80 to 23.76 mN/m), immense hydrocarbons emulsification capacity (50-60%) and greater stability at wide range of temperature (4-100 °C) and pH (4-10) along with an excellent (56.18 ± 1.59%) additional oil recovery in sand-pack column lab test.

20.
Appl Spectrosc ; 71(4): 640-650, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28374614

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA