Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Divers ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775995

RESUMO

The remarkable conservation of the FtsZ among Gram-positive and Gram-negative bacteria, a crucial GTPase in bacterial cell division, has emerged as a promising antibacterial drug target to combat antibacterial resistance. There have been several coordinated efforts to develop inhibitors against FtsZ which can also serve as potential candidates for future antibiotics. In the present study, a natural product-like library (≈50,000 compounds) was employed to conduct HTVS against Staphylococcus aureus FtsZ protein (PDB Id: 6KVP). Additionally, molecular docking was carried out in two modes, SP and XP docking, using the Schrödinger suite. The glide scores of ligands obtained by XP docking were further summarized and compared with the control ligands (ZI1- co-crystal and PC190723-a compound undergoing clinical trial). Using the Prime-MM-GBSA approach, BFE calculations were performed on the top XP-scored ligands (≈598 compounds). These hits were also evaluated for ADMET parameters using the Qikprop algorithm, SwissADME, and in silico carcinogenicity testing using Carcinopred-El. Based on the results, ligand 4-FtsZ complex was considered for the 300 ns MDS analysis to get insights into its binding modes within the catalytic pocket of FtsZ protein. The analysis revealed that the amide linkage sandwiched between the triazole and 1-oxa-8-azaspirodecan-8-ium moiety (Val203) as well as the aminoethyl group present at 1st position on the triazole moiety (Leu209, Leu200, Asp210, and Ala202) were responsible for the FtsZ inhibitory activity, owing to their crucial interactions with key amino acid residues. Further, the complex also displayed good protein-ligand stability, ultimately predicting ligand 4 as a potent lead compound for the inhibition of FtsZ. Thus, our in silico findings will serve as a framework for in-depth in-vitro and in-vivo investigations encouraging the development of FtsZ inhibitors as a new generation of antibacterial agents.

2.
PeerJ ; 12: e17177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563005

RESUMO

Background: Plants have been pivotal in traditional and modern medicine globally, with historical evidence supporting their therapeutic applications. Nigella (Nigella sativa L.) is an annual herbaceous plant of the Ranunculaceae family and is cultivated in the Middle East, Eastern Europe, and Western and Central Asia. The medicinal use of plants dates back thousands of years, documented in ancient writings from various civilizations. Alkaloids, phenolics, saponins, flavonoids, terpenoids, anthraquinones, and tannins found in plants exhibit antioxidant, immunomodulatory, anti-inflammatory, anticancer, antibacterial, and antidiabetic activities. Methodology: This study specifically examines the pharmacological potential of Nigella sativa L., emphasizing thymoquinone-a compound with diverse nutraceutical benefits. The extraction, characterization, and quantification of thymoquinone, alongside other physicochemical parameters, were carried out using ethanol through Soxhlet extraction procedures on five nigella varieties. HPLC analysis was performed to determine the maximum accumulation of thymoquinone in the released variety of the plant and the chemical composition of the seed oil isolated from Nigella sativa L., varieties utilized in the study was determined through GC-MS analysis. Results: The research revealed that the Ajmer nigella-20 variety stands out, exhibiting elevated levels of thymoquinone (0.20 ± 0.07%), antioxidants (76.18 ± 1.78%), and substantial quantities of total phenols (31.85 ± 0.97 mg GAEg-1 seed) and flavonoids (8.150 ± 0.360 mg QE 100 g-1 seed) compared to other varieties. The GC-MS profiling showed the presence of 11 major compounds in the studied varieties, with p-cymene, longifolene, and myristic acid identified as the major chemical compounds present in the oil. Conclusion: The observed variations among Nigella varieties indicate the Ajmer nigella-20 variety as particularly promising for thymoquinone and bioactive compound extraction. This study underscores Nigella's potential as a source of pharmacologically active compounds, highlighting the need for further exploration in therapeutic applications.


Assuntos
Benzoquinonas , Nigella sativa , Nigella , Nigella sativa/química , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides
3.
Sci Rep ; 14(1): 7263, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538715

RESUMO

Agro-waste is the outcome of the under-utilization of bioresources and a lack of knowledge to re-use this waste in proper ways or a circular economy approach. In the Indian medicinal system, the root of Cyperus scariosus (CS) is used at a large scale due to their vital medicinal properties. Unfortunately, the aerial part of CS is treated as agro-waste and is an under-utilized bioresource. Due to a lack of knowledge, CS is treated as a weed. This present study is the first ever attempt to explore CS leaves as medicinally and a nutrient rich source. To determine the food and nutritional values of the neglected part of Cyperus scariosus R.Br. (CS), i.e. CS leaves, phytochemicals and metal ions of CS were quantified by newly developed HPLC and ICPOES-based methods. The content of the phytochemicals observed in HPLC analysis for caffeic acid, catechin, epicatechin, trans-p-coumaric acid, and trans-ferulic acid was 10.51, 276.15, 279.09, 70.53, and 36.83 µg/g, respectively. In GC-MS/MS analysis, fatty acids including linolenic acid, phytol, palmitic acid, etc. were identified. In ICPOES analysis, the significant content of Na, K, Ca, Cu, Fe, Mg, Mn, and Zn was observed. The TPC and TFC of the CS leaves was 17.933 mg GAE eq./g and 130.767 mg QCE eq./g along with an IC50 value of 2.78 mg/mL in the DPPH assay and better antacid activity was measured than the standard (CaCO3). The methanolic extract of CS leaves showed anti-microbial activity against Staphylococcus aureus (15 ± 2 mm), Pseudomonas aeruginosa (12 ± 2 mm) and Escherichia coli (10 ± 2 mm). In silico studies confirmed the in vitro results obtained from the antioxidant, antiacid, and anti-microbial studies. In addition, in silico studies revealed the anti-cancerous and anti-inflammatory potential of the CS leaves. This study, thus, demonstrated the medicinal significance of the under-utilized part of CS and the conversion of agro-waste into mankind activity as a pharmaceutical potent material. Consequently, the present study highlighted that CS leaves have medicinal importance with good nutritional utility and have a large potential in the pharmaceutical industry along with improving bio-valorization and the environment.


Assuntos
Cyperus , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antioxidantes/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Folhas de Planta/química
4.
Pathol Res Pract ; 254: 155156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309021

RESUMO

Cancer is a multifactorial pathological condition characterized by uncontrolled cellular proliferation, genomic instability, and evasion of regulatory mechanisms. It arises from the accumulation of genetic mutations confer selective growth advantages, leading to malignant transformation and tumor formation. The intricate interplay between LncRNAs and the Hedgehog pathway has emerged as a captivating frontier in cancer research. The Hedgehog pathway, known for its fundamental roles in embryonic development and tissue homeostasis, is frequently dysregulated in various cancers, contributing to aberrant cellular proliferation, survival, and differentiation. The Hh pathway is crucial in organizing growth and maturation processes in multicellular organisms. It plays a pivotal role in the initiation of tumors as well as in conferring resistance to conventional therapeutic approaches. The crosstalk among the Hh pathway and lncRNAs affects the expression of Hh signaling components through various transcriptional and post-transcriptional processes. Numerous pathogenic processes, including both non-malignant and malignant illnesses, have been identified to be induced by this interaction. The dysregulation of lncRNAs has been associated with the activation or inhibition of the Hh pathway, making it a potential therapeutic target against tumorigenesis. Insights into the functional significance of LncRNAs in Hedgehog pathway modulation provide promising avenues for diagnostic and therapeutic interventions. The dysregulation of LncRNAs in various cancer types underscores their potential as biomarkers for early detection and prognostication. Additionally, targeting LncRNAs associated with the Hedgehog pathway presents an innovative strategy for developing precision therapeutics to restore pathway homeostasis and impede cancer progression. This review aims to elucidate the complex regulatory network orchestrated by LncRNAs, unravelling their pivotal roles in modulating the Hedgehog pathway and influencing cancer progression.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/patologia , Carcinogênese , Transdução de Sinais/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo
5.
Pathol Res Pract ; 254: 155091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194804

RESUMO

MicroRNA-21 (miR-21) was recognized as a key figure in the intricate web of tumor biology, with a prominent role in regulating the PTEN tumor suppressor gene and the PI3K/AKT cascade. This review elucidates the multifaceted interactions between miR-21, PTEN, and the PI3K/AKT signaling, shedding light on their profound implications in cancer initiation, progression, and therapeutic strategies. The core of this review delves into the mechanical intricacies of miR-21-mediated PTEN suppression and its consequent impact on PI3K/AKT pathway activation. It explores how miR-21, as an oncogenic miRNA, targets PTEN directly or indirectly, resulting in uncontrolled activation of PI3K/AKT, fostering cancerous cell survival, proliferation, and evasion of apoptosis. Furthermore, the abstract emphasizes the clinical relevance of these molecular interactions, discussing their implications in various cancer types, prognostic significance, and potential as therapeutic targets. The review provides insights into ongoing research efforts to develop miR-21 inhibitors and strategies to restore PTEN function, offering new avenues for cancer treatment. This article illuminates the critical function of miR-21 in PTEN suppression and PI3K/AKT activation, offering profound insights into its implications for cancer biology and the potential for targeted interventions.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Apoptose/genética , Proliferação de Células/genética , Biologia , Linhagem Celular Tumoral , Neoplasias/genética
6.
J Oral Maxillofac Pathol ; 27(3): 602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033963

RESUMO

Background: Validity of various detection methods used are likely contributing factor to this wide variation of prevalence of HPV (0-73%) by using GP5/GP6/MY09/MY11 (L1) primer. PCR is a sensitive method but does not identify transcriptionally active High-risk Human papillomavirus and also does not indicate whether the virus is isolated from malignant tumour cells and non-neoplastic cells. P16ink4a Immunohistochemistry is a highly sensitive and Cost-effective surrogate marker for transcriptionally active high-risk HPV for oral cancer. Objective The aim of the present study was to evaluate the H-SCORE of p16 expression in the surface epithelial tumour sites of a large cohort of squamous cell carcinoma (SCC), severe dysplasia (SD). we sought to determine whether the p16 algorithm is reliable in Oral cavity SCC and severe dysplasia (SD). Materials and Methods: This study used Immunohistochemistry in archival Formalin-fixed paraffin embedded specimens for assessment of p16 protein expression, cytoplasmic and nuclear staining intensity was categorized based on score (range, 0-3) and presence of tumour cell staining (0-100%). Results: The majority of positive cases had low H-score of p16 staining except 3/161 (1.8%) cases of tongue SCC had positive for p16 with diffuse moderate staining with ≥2 scores. There were no significant differences in the distribution of demographic, exposure and histopathological characteristics between patients with and without P16 expression. Conclusion: The present study demonstrated that p16 expression is a reliable HPV marker in the lateral border of the tongue with tonsil involvement but no other sites of the oral cavity. Further p16 IHC detection is required in large cohort of all sites of tongue squamous cell carcinoma studies to validate the marker of HPV.

7.
Chem Biodivers ; 20(12): e202301234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867394

RESUMO

The genus of Salix is used in food, medicine and nutraceuticals, and standardized by using the single marker compound Salicin only. Stem bark is the official part used for the preparation of various drugs, nutraceuticals and food products, which may lead to overexploitation and damage of tree. There is need to search substitution of the stem bark with leaf of Salix alba L. (SA), which is yet not reported. Comparative phytochemicals viz. Salicin, Procyanidin B1 and Catechin were quantified in the various parts of SA viz. heart wood (SA-HW), stem bark (SA-SB) and leaves (SA-L) of Salix alba L.by using newly developed HPLC method. It was observed that SA-HW and SA-L contained far better amount of Salicin, Procyanidin B and Catechin as compared to SA-SB (SA-HW~SA-L≫SA-SB). Essential and toxic metal ions of all three parts were analysed using newly developed ICP-OES method, where SA-L were founded as a rich source of micronutrients and essential metal ions as compared to SA-SB and SA-HW. GC-MS analysis has shown the presence of fatty acids and volatile compounds. The observed TPC and TFC values for all three parts were ranged from 2.69 to 32.30 mg GAE/g of wt. and 37.57 to 220.76 mg QCE/g of wt. respectively. In DPPH assay the IC50 values of SA-SB, SA-HW, and SA-L were 1.09 (±0.02), 5.42 (±0.08), and 8.82 (±0.10) mg/mL, respectively. The order of antibacterial activities against E. coli, S. aureus, P. aeruginosa, and B. subtilis strains was SA-L>SA-HW>SA-SB with strong antibacterial activities against S. aureus, and B. subtilis strains. The antacid activities order was SA-L>SA-SB>SA-HW. The leaves of SA have shown significant source of nutrients, phytochemicals and medicinal properties than SA-HW and SA-SB. The leaves of SA may be considered as substitute of stem bark to save the environment or to avoid over exploitation, but after the complete pharmacological and toxicological studies.


Assuntos
Anti-Infecciosos , Antiulcerosos , Catequina , Salix , Catequina/farmacologia , Antioxidantes/análise , Antiácidos/análise , Antiácidos/metabolismo , Salix/química , Salix/metabolismo , Madeira , Casca de Planta/química , Escherichia coli , Staphylococcus aureus , Extratos Vegetais/química , Compostos Fitoquímicos/química , Antibacterianos/metabolismo , Folhas de Planta , Anti-Infecciosos/metabolismo
8.
Chem Biodivers ; 20(10): e202301049, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37728228

RESUMO

Mimosa pudica L. (MP) is well-known plant in traditional medicinal system, especially in India. Unfortunately, leaves of MP are less explored. To determine the food and nutritional value of the neglected part of Mimosa pudica L. (MP), that is MP leaves, phytochemicals and metal ions of MP were quantified by newly developed HPLC and ICPOES-based methods. The content of phytochemicals observed using HPLC analysis for chlorogenic acid, catechin, and epicatechin was 141.823 (±8.171), 666.621 (±11.432), and 293.175 (±12.743) µg/g, respectively. Using GC/MS/MS analysis, fatty acid like oleic acid were identified. In ICP-OES analysis, a significant content of Na, K, Ca, Cu, Fe, Mg, Mn, and Zn was observed. The observed TPC and TFC for MP leaf extracts was 44.327 (±1.041) mg GAE/ g of wt. and 214.217 (±4.372) mg QCE/ g of wt., respectively. The DPPH assay depicted a strong antioxidant activity of MP leaf extracts with IC50 values of 0.796 (±0.081) mg/mL and a TEAC value of 0.0356 (±0.0003). A significant antacid activity (666 mg MP+400 mg CaCO3 >400 mg CaCO3 ≫666 mg Gelusil) of MP leaves was noticed. The methanolic extract of MP leaves demonstrated anti-microbial activity against Staphylococcus aureus (15±2mm), Pseudomonas aeruginosa (12±2mm) and Escherichia coli (10±2mm). In silico studies confirmed the in vitro results obtained for antioxidant, antiacid, and anti-microbial activities. In addition, in silico studies revealed the anti-cancerous and anti-inflammatory potential of the MP leaves. In summary, this study demonstrated the medicinal significance of MP leaves and the conversion of agro-waste or the under-utilized part of MP into pharmaceutical potent materials. Consequently, the present study highlighted that MP leaves alone have medicinal importance with good nutritional utility and possess large promise in the pharma industry along with improving bio-valorization and the environment.

9.
Sci Rep ; 13(1): 16420, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775650

RESUMO

Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.


Assuntos
Antiarrítmicos , Fibrilação Atrial , Humanos , Animais , Cobaias , Cães , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Fibrilação Ventricular/tratamento farmacológico , Cálcio , Fibrilação Atrial/tratamento farmacológico , Músculos Papilares , Modelos Animais
10.
Artigo em Inglês | MEDLINE | ID: mdl-37608670

RESUMO

Urolithiasis, commonly known as kidney stones, is characterized by the formation of hard deposits in the urinary tract. These stones can cause severe pain and discomfort, and their management typically involves a combination of medical interventions and lifestyle modifications. According to the literature, 30% and 50% of urolithiasis cases recur. Between 9 and 12% of persons in industrialised countries are predicted to have urolithiasis at some time. Due to the high frequency of stone formation, recurrent nature, and prevalence in adults, it has a significant impact on society, the person, and the health care system. Adopting the best prophylactic measures is crucial in light of these developments to decrease the impact of urolithiasis on individuals and society. In recent years, there has been growing interest in the potential role of nutraceuticals in the management of urolithiasis. Nutraceuticals, such as herbal extracts, vitamins, minerals, and probiotics, have gained recognition for their potential in promoting urinary health and reducing the risk of urolithiasis. These compounds can aid in various ways, including inhibiting crystal formation, enhancing urine pH balance, reducing urinary calcium excretion, and supporting kidney function. Additionally, nutraceuticals can help alleviate symptoms associated with urolithiasis, such as pain and inflammation. While medical interventions remain crucial, incorporating nutraceuticals into a comprehensive management plan can offer a holistic approach to urolithiasis, improving patient outcomes and quality of life. Therefore, nutraceuticals may be a desirable choice for treating and avoiding recurring urolithiasis for patients and medical professionals. Therefore, the present study has focused on nutraceuticals' role in preventing urolithiasis.

11.
Environ Res ; 235: 116573, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437865

RESUMO

Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.


Assuntos
Sistemas CRISPR-Cas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Edição de Genes , Linfócitos T/metabolismo
12.
Front Med Technol ; 5: 1236107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521721

RESUMO

Nanotechnology has become one of the most rapid, innovative, and adaptable sciences in modern science and cancer therapy. Traditional chemotherapy has limits owing to its non-specific nature and adverse side effects on healthy cells, and it remains a serious worldwide health issue. Because of their capacity to specifically target cancer cells and deliver therapeutic chemicals directly to them, nanoparticles have emerged as a viable strategy for cancer therapies. Nanomaterials disclose novel properties based on size, distribution, and shape. Biosynthesized or biogenic nanoparticles are a novel technique with anti-cancer capabilities, such as triggering apoptosis in cancer cells and slowing tumour growth. They may be configured to deliver medications or other therapies to specific cancer cells or tumour markers. Despite their potential, biosynthesized nanoparticles confront development obstacles such as a lack of standardisation in their synthesis and characterization, the possibility of toxicity, and their efficiency against various forms of cancer. The effectiveness and safety of biosynthesized nanoparticles must be further investigated, as well as the types of cancer they are most successful against. This review discusses the promise of biosynthesized nanoparticles as a novel approach for cancer therapeutics, as well as their mode of action and present barriers to their development.

13.
Chem Biol Drug Des ; 101(3): 614-625, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36198102

RESUMO

Because androgen receptor (AR) signalling is important for the development and progression of prostate cancer (PC), AR antagonists are utilized in clinical practices to treat PC and are referred to as androgen deprivation therapy (ADT). However, continued administration of AR antagonists often results in the development of resistance, known as castration-resistant prostate cancer (CRPC). Despite castration, it has been demonstrated that AR signalling continues to be fundamental to tumour growth. In this regard, a series of readily synthesizable 4,4-dimethylimidazolidine-2-one pharmacophore-based AR antagonists (FAR01-FAR11) were designed and synthesized. Androgen-dependent LNCaP PC cell line was used to test the AR-antagonist activity of these compounds in vitro and compared with the U.S. Food and Drug Administration (FDA) approved second-generation enzalutamide. In our previous work, rigid thiohydantoin pharmacophore in enzalutamide is replaced by the flexible 4,4-dimethylimidazolidin-2-one. In order to improve the flexibility further, one methylene group is introduced between the pharmacophore and one of the aromatic ring. Despite the fact that the amide functional group is a crucial characteristic for building AR antagonists, this class of molecules lacks one. FAR06 has the exact same activity as enzalutamide (IC50 : 0.782 µM) with an IC50 value of 0.801 µM among the series of compounds.


Assuntos
Antagonistas de Receptores de Andrógenos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Androgênios/farmacologia , Androgênios/uso terapêutico , Antagonistas de Androgênios/farmacologia , Farmacóforo , Nitrilas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
14.
Sci Rep ; 12(1): 13134, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908078

RESUMO

Dill seeds (Anethum graveolens L.) is the most valuable medicinal seed spice crop of Apiaceae. It bears small yellow flowers in the form of umbels. Being a cross-pollinated crop, floral visitors play vital role in pollination and seed sets. Hence, the present study was conducted at the ICAR-National Research Centre on Seed Spices, Ajmer (Rajasthan), India to discover the pollinator's community, foraging behaviour and abundance of most frequent pollinators and different modes of pollination on seed yield and quality of this seed spice crop. The insect visitors community of dill seeds was composed of 28 insect species belonging to 14 families of 6 orders. Most of floral visitors started their foraging activity at 8.00 h, reached peak activity between 12.00 and 14.00 h and their activity ceased at 18.00 h. Apis florea, A. dorsata, A. mellifera, solitary bee, Halictus sp. and two unidentified species of Hymenoptera; Episyrphus balteatus (DeGeer), Episyrphus sp., Eristalis sp and two other Musca species of Diptera were identified as potential and regular floral visitors of dill seeds. The highest seed yield of 1505.63 kg/ha was recorded in the treated plots provided with only 10% jaggery solution and was at par with the open pollination. A lower seed yield of 1432.5 kg/ha was recorded in plots pollinated only with A. mellifera inside insect cages. Open pollination with 10% jaggery solution spray increased the seed yield of dill seed crop by 57%, one-thousand seed test weight by 96% and the essential oil content by 27% over control plots. These results show that managed pollination is a much better way to enhance yields and quality of dill seed crop than other treatments including only honeybee-based pollination.


Assuntos
Anethum graveolens , Dípteros , Óleos Voláteis , Animais , Abelhas , Flores , Índia , Insetos , Polinização , Sementes
15.
3 Biotech ; 12(4): 89, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35299989

RESUMO

This study was carried out to understand the probiotic features, ability to utilize non-digestible carbohydrates and comparative genomics of anti-inflammatory Bifidobacterium strains isolated from human infant stool samples. Bacterial strains were isolated from the stool samples using serial dilution on MRS agar plates supplemented with 0.05% l-cysteine hydrochloride and mupirocin. Molecular characterization of the strains was carried out by 16S rRNA gene sequencing. Anti-inflammatory activity was determined using TNF-α and lipopolysaccharide (LPS) induced inflammation in Caco2 cells. Probiotic attributes were determined as per the established protocols. Isomaltooligosaccharides (IMOS) utilization was determined in the broth cultures. Whole genome sequencing and analysis was carried out for three strains. Four obligate anaerobic, Gram positive Bifidobacterium strains were isolated from the infant stool samples. Strains were identified as Bifidobacterium longum Bif10, B. breve Bif11, B. longum Bif12 and B. longum Bif16. The strains were able to prevent inflammation in the Caco2 cells through lowering of IL8 production that was caused by TNF-α and LPS treatment. The strains exhibited desirable probiotic attributes such as acid and bile tolerance, mucin binding, antimicrobial activity, bile salt hydrolase activity, cholesterol lowering ability and could ferment non-digestible carbohydrates such as isomaltooligosaccharides and raffinose. Furthermore, Isomaltooligosaccharides supported the optimum growth of the strains in vitro, which was comparable to that on glucose. Strains could metabolize IMOS through cell associated α-glucosidase activity. Genomic features revealed the presence of genes responsible for the utilization of IMOS and for the probiotic attributes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03141-2.

17.
Futur J Pharm Sci ; 7(1): 171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466412

RESUMO

BACKGROUND: Anu Taila is an ancient medicated oil Ayurvedic preparation that is commonly used for nasya karma. It contains more than 25 herbs and goat milk as per the Ayurvedic Formulary of India (AFI). It strengthens the neck, shoulder, and chest muscles and improves the capacity of sense organs. It delays the aging process and reduces hair fall. Recent studies showed that it is also useful in COVID-19. In the current study, an attempt to develop quality control protocols and evaluate the standardization parameters like refractive index, iodine value, saponification value, peroxide value, acid value, rancidity, HPTLC fingerprint profile along with major bioactive compound and quantification of Berberine chloride, Negundoside, and Marmelosin by HPLC. Establishing quality protocol and standard parameters like physicochemical parameters and estimation of bioactive compounds of this preparation is significant for quality control. RESULTS: In this study, HPTLC identifies bioactive chemical compounds like Berberine chloride, Marmelosin, Negundoside, glycyrrhizin, and para hydroxybenzoic acid (PHBA), Lupeol, Embelin, and Solasodine, which were present in the Anu Taila formulation. HPLC was used to estimate the bioactive marker compounds Negundoside, Berberine chloride, and Marmelosin were present in the Anu Taila formulation. The quantitative evaluation of Berberine chloride (0.0013%), Marmelosin (0.0366%), Negundoside (0.0086%) is present in Anu Taila formulation. CONCLUSION: The study reveals that sufficient quality control parameters were followed during the preparation of the formulation. Physicochemical analysis was carried out as per the guidelines of Ayurvedic Pharmacopeia of India. HPTLC and HPLC profiles generated in this particular study can be considered as a preliminary tool ascertaining the authenticity of Anu Taila.

18.
Eng Rep ; 2(9): e12238, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32838227

RESUMO

Peptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed. They are being used widely in polymerase chain reaction modulation/mutation, fluorescent in-situ hybridization, and in microarray as a probe; they are also utilized in many in-vitro and in-vivo assays and for developing micro and nano-sized biosensor/chip/array technologies. Earlier reviews, focused only on PNA properties, structure, and modifications related to diagnostics and therapeutics; our review emphasizes on PNA properties and synthesis along with its potential applications in diagnosis and therapeutics. Furthermore, prospects in biomedical applications of PNAs are being discussed in depth.

19.
J Pain Res ; 13: 211-219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021410

RESUMO

BACKGROUND: With the increase in life expectancy seen throughout the world, the prevalence of degenerative spinal pathology and surgery to treat it has increased. Spinal surgery under general anesthesia leads to various problems and complications, especially in patients with numerous medical comorbidities or elderly patients. For this reason, there is a need for safer anesthetic methods applicable to unhealthy, elderly patients undergoing spinal surgery. PURPOSE: To report our experience with utilizing fluoroscopy-guided epidural anesthesia in conjunction with conscious sedation in spinal surgery. PATIENTS AND METHODS: We performed a retrospective review of 111 patients at our institution that received fluoroscopy-guided epidural anesthesia for lumbar surgery from February to September 2018. Patients' records were evaluated to evaluate patient demographics, American Society of Anesthesiology Physical Classification System (ASA) class, and pain numerical rating scores (NRS) preoperatively and throughout their recovery postoperatively. Intraoperative data including volume of epidural anesthetic used, extent of epidural spread, and inadvertent subdural injection was collected. Postoperative recovery time was also collected. RESULTS: The mean age of our patients was 60 years old with a range between 31 and 83 years old. All patients experienced decreases in postoperative pain with no significant differences based on age or ASA class. There was no association between ASA class and time to recovery postoperatively. Older patients (age 70 years or greater) had a significantly longer recovery time when compared to younger patients. Recovery also was longer for patients who received higher volumes of epidural anesthesia. For every 1 mL increase of epidural anesthetic given, there was an increase in the extent of spread of 1.8 spinal levels. CONCLUSION: We demonstrate the safety and feasibility of utilizing conscious sedation in conjunction with fluoroscopy-guided epidural anesthesia in the lumbar spinal surgery.

20.
RSC Adv ; 10(45): 27194-27214, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515804

RESUMO

Nanotechnology is the branch of science which deals with particles ranging between 1-100 nm. These particles are called nanoparticles, and they exhibit unique electronic, optical, magnetic, and mechanical properties, which make them different from the bulk material. These properties of nanomaterials help them to find a variety of applications in the biomedical, agricultural, and environmental domains. Cerium oxide nanoparticles have gained a lot of attention as a potential future candidate for ending various kinds of problems by exhibiting redox activity, free radical scavenging property, biofilm inhibition, etc. Synthesis of these nanoparticles can be performed very easily by utilizing chemical or biological methods. But in this review, the focus is laid on the biosynthesis of these nanoparticles; as the biosynthesis method makes the cerium oxide nanoparticle less toxic and compatible with the living tissues, which helps them to find their path as an anticancer, anti-inflammatory and antibacterial agents. The pre-existing reviews have only focused on details relating to properties/applications/synthesis; whereas this review draws attention towards all the aspects in single review covering all the details in depth such as biosynthesis methods and its effect on the living tissues, along with properties, biomedical applications (diagnostic and therapeutic) and future outlook of the cerium oxide nanoparticle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA