Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102596, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257405

RESUMO

Novel vaccination strategies are crucial to efficiently control tuberculosis, as proposed by the World Health Organization under its flagship program "End TB Strategy." However, the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), particularly in those coinfected with HIV-AIDS, constitutes a major impediment to achieving this goal. We report here a novel vaccination strategy that involves synthesizing a formulation of an immunodominant peptide derived from the Acr1 protein of Mtb. This nanoformulation in addition displayed on the surface a toll-like receptor-2 ligand to offer to target dendritic cells (DCs). Our results showed an efficient uptake of such a concoction by DCs in a predominantly toll-like receptor-2-dependent pathway. These DCs produced elevated levels of nitric oxide, proinflammatory cytokines interleukin-6, interleukin-12, and tumor necrosis factor-α, and upregulated the surface expression of major histocompatibility complex class II molecules as well as costimulatory molecules such as CD80 and CD86. Animals injected with such a vaccine mounted a significantly higher response of effector and memory Th1 cells and Th17 cells. Furthermore, we noticed a reduction in the bacterial load in the lungs of animals challenged with aerosolized live Mtb. Therefore, our findings indicated that the described vaccine triggered protective anti-Mtb immunity to control the tuberculosis infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Células Dendríticas , Epitopos , Ligantes , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/metabolismo , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Camundongos
2.
Cell Mol Life Sci ; 79(11): 567, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36283989

RESUMO

Mycobacterium tuberculosis (Mtb) is a smart and successful pathogen since it can persist in the intimidating environment of the host by taming and tuning the immune system. Mtb releases MPT64 (Rv1980c) protein in high amounts in patients with active tuberculosis (TB). Consequently, we were curious to decipher the role of MPT64 on the differentiating dendritic cells (DCs) and its relation to evading the immune system. We observed that pre-exposure of differentiating DCs to MPT64 (DCMPT64) transformed them into a phenotype of myeloid-derived suppressor cells (MDSCs). DCMPT64 expressed a high level of immunosuppressive molecules PD-L1, TIM-3, nitric oxide (NO), arginase 1, IDO-1, IL-10 and TGF-ß, but inhibited the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-12. DCMPT64 chemotaxis function was diminished due to the reduced expression of CCR7. DCMPT64 promoted the generation of regulatory T cells (Tregs) but inhibited the differentiation of Th1 cells and Th17 cells. Further, high lipid and methylglyoxal content, and reduced glucose consumption by DCMPT64, rendered them metabolically quiescent and consequently, reduced DCMPT64 ability to phagocytose Mtb and provided a safer shelter for the intracellular survival of the mycobacterium. The mechanism identified in impairing the function of DCMPT64 was through the increased production and accumulation of methylglyoxal. Hence, for the first time, we demonstrate the novel role of MPT64 in promoting the generation of MDSCs to favor Mtb survival and escape its destruction by the immune system.


Assuntos
Mycobacterium tuberculosis , Células Supressoras Mieloides , Células Supressoras Mieloides/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Arginase , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Antígeno B7-H1/metabolismo , Óxido Nítrico/metabolismo , Aldeído Pirúvico/metabolismo , Interleucina-6/metabolismo , Receptores CCR7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Th1 , Citocinas/metabolismo , Interleucina-12/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Glucose/metabolismo , Lipídeos , Células Dendríticas/metabolismo
3.
Front Cell Infect Microbiol ; 11: 669168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307192

RESUMO

For a long time, tuberculosis (TB) has been inflicting mankind with the highest morbidity and mortality. Although the current treatment is extremely potent, a few bacilli can still hide inside the host mesenchymal stem cells (MSC). The functional capabilities of MSCs are known to be modulated by TLRs, NOD-2, and RIG-1 signaling. Therefore, we hypothesize that modulating the MSC activity through TLR-4 and NOD-2 can be an attractive immunotherapeutic strategy to eliminate the Mtb hiding inside these cells. In our current study, we observed that MSC stimulated through TLR-4 and NOD-2 (N2.T4) i) activated MSC and augmented the secretion of pro-inflammatory cytokines; ii) co-localized Mtb in the lysosomes; iii) induced autophagy; iv) enhanced NF-κB activity via p38 MAPK signaling pathway; and v) significantly reduced the intracellular survival of Mtb in the MSC. Overall, the results suggest that the triggering through N2.T4 can be a future method of immunotherapy to eliminate the Mtb concealed inside the MSC.


Assuntos
Células-Tronco Mesenquimais , Mycobacterium tuberculosis , Tuberculose , Humanos , Proteína Adaptadora de Sinalização NOD2 , Transdução de Sinais , Receptor 4 Toll-Like
4.
BMC Infect Dis ; 20(1): 677, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32942991

RESUMO

BACKGROUND: Approximately 80% - 90% of individuals infected with latent Mycobacterium tuberculosis (Mtb) remain protected throughout their life-span. The release of unique, latent-phase antigens are known to have a protective role in the immune response against Mtb. Although the BCG vaccine has been administered for nine decades to provide immunity against Mtb, the number of TB cases continues to rise, thereby raising doubts on BCG vaccine efficacy. The shortcomings of BCG have been associated with inadequate processing and presentation of its antigens, an inability to optimally activate T cells against Mtb, and generation of regulatory T cells. Furthermore, BCG vaccination lacks the ability to eliminate latent Mtb infection. With these facts in mind, we selected six immunodominant CD4 and CD8 T cell epitopes of Mtb expressed during latent, acute, and chronic stages of infection and engineered a multi-epitope-based DNA vaccine (C6). RESULT: BALB/c mice vaccinated with the C6 construct along with a BCG vaccine exhibited an expansion of both CD4 and CD8 T cell memory populations and augmented IFN-γ and TNF-α cytokine release. Furthermore, enhancement of dendritic cell and macrophage activation was noted. Consequently, illustrating the elicitation of immunity that helps in the protection against Mtb infection; which was evident by a significant reduction in the Mtb burden in the lungs and spleen of C6 + BCG administered animals. CONCLUSION: Overall, the results suggest that a C6 + BCG vaccination approach may serve as an effective vaccination strategy in future attempts to control TB.


Assuntos
Vacina BCG/imunologia , Epitopos de Linfócito T , Tuberculose/prevenção & controle , Vacinas de DNA/imunologia , Animais , Antígenos de Bactérias/imunologia , Vacina BCG/genética , Vacina BCG/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Feminino , Memória Imunológica , Interferon gama/metabolismo , Tuberculose Latente/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Vacinas de DNA/farmacologia
5.
Cancer Immunol Immunother ; 68(12): 1995-2004, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31690954

RESUMO

Glioblastoma is a highly prevalent and aggressive form of primary brain tumor. It represents approximately 56% of all the newly diagnosed gliomas. Macrophages are one of the major constituents of tumor-infiltrating immune cells in the human gliomas. The role of immunosuppressive macrophages is very well documented in correlation with the poor prognosis of patients suffering from breast, prostate, bladder and cervical cancers. The current study highlights the correlation between the tumor-associated macrophage phenotypes and glioma progression. We observed an increase in the pool of M2 macrophages in high-grade gliomas, as confirmed by their CD68 and CD163 double-positive phenotype. In contrast, less M1 macrophages were noticed in high-grade gliomas, as evidenced by the down-regulation in the expression of CCL3 marker. In addition, we observed that higher gene expression ratio of CD163/CCL3 is associated with glioma progression. The Kaplan-Meier survival plots indicate that glioma patients with lower expression of M2c marker (CD163), and higher expression of M1 marker (CCL3) had better survival. Furthermore, we examined the systemic immune response in the peripheral blood and noted a predominance of M2 macrophages, myeloid-derived suppressor cells and PD-1+ CD4 T cells in glioma patients. Thus, the study indicates a high gene expression ratio of CD163/CCL3 in high-grade gliomas as compared to low-grade gliomas and significantly elevated frequency of M2 macrophages and PD-1+ CD4 T cells in the blood of tumor patients. These parameters could be used as an indicator of the early diagnosis and prognosis of the disease.


Assuntos
Neoplasias Encefálicas/imunologia , Linfócitos T CD4-Positivos/patologia , Glioblastoma/imunologia , Macrófagos/imunologia , Células Supressoras Mieloides/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Neoplasias Encefálicas/mortalidade , Carcinogênese , Quimiocina CCL3/metabolismo , Citocinas/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioblastoma/mortalidade , Humanos , Tolerância Imunológica , Imunidade Humoral , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Superfície Celular/metabolismo , Análise de Sobrevida , Células Th2/imunologia
6.
Bioconjug Chem ; 29(4): 1102-1110, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29489340

RESUMO

Peptide-based drug delivery systems have become a mainstay in the contemporary medicinal field, resulting in the design and development of better pharmaceutical formulations. However, most of the available reports employ tedious multiple reaction steps for the conjugation of bioactive cationic peptides with drug delivery vehicles. To overcome these limitations, the present work describes a one-step approach for facile and time efficient synthesis of highly cationic cell penetrating peptide functionalized gold nanoparticles and their intracellular delivery. The nanoconstruct was synthesized by the reduction of gold metal ions utilizing cell penetrating peptide (CPP), which facilitated the simultaneous synthesis of metal nanoparticles and the capping of the peptide over the nanoparticle surface. The developed nanoconstruct was thoroughly characterized and tested for intracellular delivery into HeLa cells. Intriguingly, a high payload of cationic peptide over gold particles was achieved, in comparison to conventional conjugation methods. Moreover, this method also provides the ability to control the size and peptide payload of nanoparticles. The nanoconstructs produced showed enhanced cancer cell penetration (µM) and significant cytotoxic effect compared to unlabeled gold nanoparticles. Therefore, this novel approach may also have significant future potential to kill intracellular hidden dreaded pathogens like the human immunodeficiency virus, Mycobacterium tuberculosis, and so forth.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/síntese química , Cátions , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Coloides/química , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/química , Temperatura , Água
7.
Front Immunol ; 9: 193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479353

RESUMO

The mononuclear phagocyte system (MPS) constitutes dendritic cells, monocytes, and macrophages. This system contributes to various functions that are essential for maintaining homeostasis, activation of innate immunity, and bridging it with the adaptive immunity. Consequently, MPS is highly important in bolstering immunity against the pathogens. However, MPS is the frontline cells in destroying Mycobacterium tuberculosis (Mtb), yet the bacterium prefers to reside in the hostile environment of macrophages. Therefore, it may be very interesting to study the struggle between Mtb and MPS to understand the outcome of the disease. In an event when MPS predominates Mtb, the host remains protected. By contrast, the situation becomes devastating when the pathogen tames and tunes the host MPS, which ultimately culminates into tuberculosis (TB). Hence, it becomes extremely crucial to reinvigorate MPS functionality to overwhelm Mtb and eliminate it. In this article, we discuss the strategies to bolster the function of MPS by exploiting the molecules associated with the innate immunity and highlight the mechanisms involved to overcome the Mtb-induced suppression of host immunity. In future, such approaches may provide an insight to develop immunotherapeutics to treat TB.


Assuntos
Imunidade Inata , Sistema Fagocitário Mononuclear/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Células Dendríticas/imunologia , Humanos , Inflamação , Macrófagos/imunologia , Camundongos , Monócitos/imunologia , Tuberculose/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA