Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700370

RESUMO

Regnase-1 is an RNase that plays a critical role in negatively regulating immune responses by destabilizing inflammatory mRNAs. Dysfunction of Regnase-1 can be a major cause of various inflammatory diseases with tissue injury and immune cell infiltration into organs. This study focuses on the role of RNase activity of Regnase-1 in developing inflammatory diseases. We have constructed mice with a single point mutation at the catalytic center of Regnase-1 RNase domain, which lacks endonuclease activity. D141N mutant mice demonstrated systemic inflammation, immune cell infiltration into various organs and progressive development of lung granuloma. CD4+ T cells, mainly affected by this mutation, upregulated mTORC1 pathway and facilitated the autoimmune trait in D141N mutation. Moreover, serine/threonine kinase Pim2 contributed to lung inflammation in this mutation. Inhibition of Pim2 kinase activity ameliorated granulomatous inflammation, immune cell infiltration and proliferation in the lungs. Additionally, Pim2 inhibition reduced the expression of adhesion molecules on CD4+ T cells, suggesting a role for Pim2 in facilitating leukocyte adhesion and migration to inflamed tissues. Our findings provide new insights into the role of Regnase-1 RNase activity in controlling immune function and underscore the therapeutic relevance of targeting Pim2 to modulate abnormal immune responses.

2.
Immunity ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38821052

RESUMO

Limited infiltration and activity of natural killer (NK) and T cells within the tumor microenvironment (TME) correlate with poor immunotherapy responses. Here, we examined the role of the endonuclease Regnase-1 on NK cell anti-tumor activity. NK cell-specific deletion of Regnase-1 (Reg1ΔNK) augmented cytolytic activity and interferon-gamma (IFN-γ) production in vitro and increased intra-tumoral accumulation of Reg1ΔNK-NK cells in vivo, reducing tumor growth dependent on IFN-γ. Transcriptional changes in Reg1ΔNK-NK cells included elevated IFN-γ expression, cytolytic effectors, and the chemokine receptor CXCR6. IFN-γ induced expression of the CXCR6 ligand CXCL16 on myeloid cells, promoting further recruitment of Reg1ΔNK-NK cells. Mechanistically, Regnase-1 deletion increased its targets, the transcriptional regulators OCT2 and IκBζ, following interleukin (IL)-12 and IL-18 stimulation, and the resulting OCT2-IκBζ-NF-κB complex induced Ifng transcription. Silencing Regnase-1 in human NK cells increased the expression of IFNG and POU2F2. Our findings highlight NK cell dysfunction in the TME and propose that targeting Regnase-1 could augment active NK cell persistence for cancer immunotherapy.

3.
J Imaging Inform Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627267

RESUMO

Skin cancer affects people of all ages and is a common disease. The death toll from skin cancer rises with a late diagnosis. An automated mechanism for early-stage skin cancer detection is required to diminish the mortality rate. Visual examination with scanning or imaging screening is a common mechanism for detecting this disease, but due to its similarity to other diseases, this mechanism shows the least accuracy. This article introduces an innovative segmentation mechanism that operates on the ISIC dataset to divide skin images into critical and non-critical sections. The main objective of the research is to segment lesions from dermoscopic skin images. The suggested framework is completed in two steps. The first step is to pre-process the image; for this, we have applied a bottom hat filter for hair removal and image enhancement by applying DCT and color coefficient. In the next phase, a background subtraction method with midpoint analysis is applied for segmentation to extract the region of interest and achieves an accuracy of 95.30%. The ground truth for the validation of segmentation is accomplished by comparing the segmented images with validation data provided with the ISIC dataset.

4.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Eferocitose , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
5.
Sci Rep ; 13(1): 15108, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704662

RESUMO

Anticorrosion and adsorption behaviour of synthesized carbohydrazide Schiff bases, namely (Z)-N'-(4-hydroxy-3-methoxybenzylidene)-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide(MBTC) and (Z)-N'-(3,4-dichlorobenzylidene)-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (CBTC) was examined for mild steel (MS) in 15% HCl medium. The corrosion inhibition study was performed by using gravimetric, thermodynamic, electrochemical and theoretical studies including density functional theory (DFT), molecular dynamic simulation (MDS) and Monte Carlo simulations (MCS). The outcomes in terms of corrosion inhibition efficiency using electrochemical impedance spectroscopy (EIS) method at 303 K and 150 ppm concentration were 96.75% for MBTC and 95.14% for CBTC. Both inhibitors adsorbed on the MS surface through physical as well as chemical adsorption and followed the Langmuir isotherm. The mixed-type nature of both inhibitors was identified by polarization results. Surface analysis was done using FESEM, EDX, AFM and XPS studies and results showed that a protective layer of inhibitor molecules was developed over the surface of MS. The results of DFT, MCS and MDS are in accordance with experimental results obtained by weight loss and electrochemical methods.

6.
STAR Protoc ; 3(4): 101580, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36223268

RESUMO

Understanding the murine fetal liver (FL) hematopoietic microenvironment, which promotes HSC proliferation, warrants identifying innate relationships between stem cells and the niche. An inclusive study of these cell associations remains elusive. Here, we optimized a protocol to immunolabel HSCs alongside the FL vasculature, a promising niche component. We provide a comprehensive plan from tissue processing, immunohistochemistry, and confocal microscopy, to three-dimensional distance analyses between HSCs and vasculature. This technique can be adapted for achieving congruous outcomes for other cell types. For complete details on the use and execution of this protocol, please refer to Biswas et al. (2020).


Assuntos
Células-Tronco Hematopoéticas , Fígado , Animais , Camundongos , Fígado/metabolismo , Células-Tronco Hematopoéticas/metabolismo
7.
Environ Sci Pollut Res Int ; 29(46): 69137-69152, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35947260

RESUMO

The level of nitrate in water has been increasing considerably all around the world due to vast application of inorganic nitrogen fertiliser and animal manure. Because of nitrate's high solubility in water, human beings are getting exposed to it mainly through various routes including water, food etc. Various regulations have been set for nitrate (45-50 mgNO3-/L) in drinking water to protect health of the infants from the methemoglobinemia, birth defects, thyroid disease, risk of specific cancers, i.e. colorectal, breast and bladder cancer caused due to nitrate poisoning. Different methods like ion exchange, adsorption, biological denitrification etc. have the ability to eliminate the nitrate from the aqueous medium. However, adsorption process got preference over the other approaches because of its simple design and satisfactory results especially with surface modified adsorbents or with mineral-based adsorbents. Different types of adsorbents have been used for this purpose; however, adsorbents derived from the biomass wastes have great adsorption capacities for nitrate such as tea waste-based adsorbents (136.43 mg/g), carbon nanotube (142.86 mg/g), chitosan beads (104 mg/g) and cetyltrimethylammonium bromide modified rice husk (278 mg/g). Therefore, a thorough literature survey has been carried out to formulate this review paper to understand various sources of nitrate pollution, route of exposure to the human beings, ill effects along with discussing the key developments as well as the new advancements reported in procuring low-cost efficient adsorbents for water purification.


Assuntos
Quitosana , Água Potável , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Adsorção , Animais , Cetrimônio , Fertilizantes , Humanos , Esterco , Minerais , Nitratos , Nitrogênio , Óxidos de Nitrogênio , Chá , Purificação da Água/métodos , Recursos Hídricos
8.
AAPS PharmSciTech ; 23(5): 144, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578122

RESUMO

Present research study was conducted to formulate kidney-targeted allopurinol (AO)-loaded chitosan nanoparticles (ANPs) for management of hyperuricemic related nephrolithiasis. Different molecular weights of chitosan were used for fabricating ANP formulation by adopting modified ionotropic gelation method. The prepared batches were than evaluated for particle size analysis, entrapment efficiency, transmission electron microscopy, X-ray diffraction, Differential Scanning Calorimetry, in vitro release and in vivo animal study. The in vivo study depicted that post 2 h of administration of different formulations and pure drug; ANPs prepared from low molecular weight chitosan showed maximum concentration of AO in kidney signifying successful kidney targeting of drug (25.92 fold) whereas no or very less amount of AO was seen in other animal groups. Effectiveness (p < 0.01) of formulation in management of hyperuricemia-associated nephrolithiasis was also evaluated via estimation of urine pH and serum and urine uric acid levels of mice. Further histological study was also performed on kidney samples which again affirmed these results. Present investigation demonstrated that ANPs prepared from low MW chitosan depicted maximum kidney-targeting ability that might be due to its specific uptake by the kidneys as well as its higher solubility than other two polymers, which results in enhanced release rate from the formulation and also offers an efficient strategy for the management of hyperuricemic nephrolithiasis.


Assuntos
Quitosana , Hiperuricemia , Nanopartículas , Nefrolitíase , Alopurinol/uso terapêutico , Animais , Quitosana/química , Portadores de Fármacos/química , Feminino , Humanos , Hiperuricemia/tratamento farmacológico , Rim , Masculino , Camundongos , Peso Molecular , Nanopartículas/química , Nefrolitíase/tratamento farmacológico , Tamanho da Partícula
9.
3 Biotech ; 11(9): 412, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34476170

RESUMO

The present investigation evaluates the potential of three cyanobacteria species Anabaena cylindrica, Nostoc commune and Synechococcus BDUSM-13 for photo-protecting mycosporine-like amino acids (MAAs) synthesis using bicarbonate-based culture system. Current investigations witnessed noteworthy bicarbonate tolerance of all species (NaHCO3; 0.5, 1 and 2 g L- 1) in terms of their growth rate, chlorophyll content, biomass productivity and carbon fixation ability. Among all strains, Synechococcus BDUSM-13 showed maximum surge in specific growth rate (i.e. 0.72 day-1) at 1 g L-1, productivity (i.e. 0.92 ± 0.06 g day-1 L-1) and chlorophyll content (i.e. 0.09 g L-1) at 2 g day-1 L-1. Synechococcus cells were also has the 0.48 g dw-1 carbon content with highest CO2 fixation rate (i.e. 0.653 g.CO2 mL-1 day-1) at 2 g L-1. Though, they were not able to produce MAAs after long UV-B exposure (i.e. 24 and 48 h). A. cylindrica strain was the most competent species for the bicarbonate-based approach, produced UV-protecting iminomycosporine compound (i.e. shinorine, λ max at 334 ± 2 nm) along with carbon fixation (i.e. 0.49 g CO2 mL-1 day-1) at 2 g L-1 NaHCO3. This suggests the bicarbonate supplementation during cultivation is a promising strategy to increase cellular abundance, biomass productivity and carbon fixation in cyanobacteria. However, UV-B irradiation may cause species-specific differences in the MAAs synthesis to produce UV-protecting compounds.

10.
Cancer Lett ; 520: 295-306, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389433

RESUMO

Interleukin (IL-6) is a pleotropic cytokine with both tumor-promoting and -inhibitory effects on breast cancer growth. However, the mechanisms governing the outcome of IL-6 on cancer progression remain to be clarified. Our study unraveled a novel long noncoding RNA (lncRNA) AU021063 downstream of IL-6 signaling. We found that IL-6 induced the expression of AU021063 predominantly in breast cancer compared to other cancer types. Mechanistically, IL-6 induced AT-rich interactive domain 5a (Arid5a) expression, which promotes the transcription of AU021063. In turn, AU021063 promotes breast cancer metastasis through stabilizing tribbles homolog 3 (Trib3) and activating Mek/Erk signaling pathway. Genetic ablation of either Arid5a, AU021063 or Trib3 abolished breast cancer metastasis in vitro and in vivo. Overall, our study highlights the importance of IL-6-Arid5a-AU021063 axis in regulating breast cancer invasiveness and metastasis, which may provide potential novel therapeutics for breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Interleucina-6/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Transdução de Sinais
11.
AAPS PharmSciTech ; 21(5): 164, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488630

RESUMO

The aim of present research work was to design, fabricate, optimize, and evaluate allopurinol (ALLO)-loaded bovine serum albumin nanoparticles (ABNPs) for kidney targeting of the drug and exploring the potential of fabricated ABNPs for management of hyperuricemia-related nephrolithiasis. ABNP formulation was prepared by employing desolvation technique, and its optimization was conducted by 2-factor-3-level central composite design (CCD) in order to achieve minimum particle size (PSA) and polydispersity index (PDI), maximum entrapment efficiency (EE), and zeta potential (ZP). Further, the optimized formulation (ABNPsopt) was also assessed for in vitro drug release study, TEM, DSC, XRD analysis, FTIR spectroscopy, and in vivo animal study. The in vivo study revealed that after 2 h of ABNPsopt administration, a significant concentration of ALLO was present in kidney (21.26-fold) as compared with serum while in case of standard pure drug group; no drug was seen in mice kidney and serum post 2 h administration, which indicates successful targeting of ALLO by formulating its albumin nanoparticles. Also, uric acid and pH levels were measured in serum and urine samples of mice which showed significant (P < 0.01) efficacy of ABNPsopt formulation in management of hyperuricemia-related nephrolithiasis. Histological studies on kidney samples also confirmed these outcomes. Findings of present study indicate higher kidney uptake of allopurinol from formulated ABNPsopt, which could be due to the specificity of albumin polymer for cubilin and megalin receptors, and it also serves as effective strategy in management of hyperuricemic-related nephrolithiasis.


Assuntos
Alopurinol/administração & dosagem , Supressores da Gota/administração & dosagem , Hiperuricemia/tratamento farmacológico , Nefrolitíase/tratamento farmacológico , Soroalbumina Bovina/química , Alopurinol/uso terapêutico , Animais , Portadores de Fármacos/química , Composição de Medicamentos , Supressores da Gota/uso terapêutico , Humanos , Hiperuricemia/complicações , Rim , Camundongos , Nanopartículas/química , Nefrolitíase/complicações , Tamanho da Partícula
12.
Proc Natl Acad Sci U S A ; 115(43): 11036-11041, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297433

RESUMO

Damage to intestinal epithelial cell (IEC) layers during intestinal inflammation is associated with inflammatory bowel disease. Here we show that the endoribonuclease Regnase-1 controls colon epithelial regeneration by regulating protein kinase mTOR (the mechanistic target of rapamycin kinase) and purine metabolism. During dextran sulfate sodium-induced intestinal epithelial injury and acute colitis, Regnase-1∆IEC mice, which lack Regnase-1 specifically in the intestinal epithelium, were resistant to body weight loss, maintained an intact intestinal barrier, and showed increased cell proliferation and decreased epithelial apoptosis. Chronic colitis and tumor progression were also attenuated in Regnase-1∆IEC mice. Regnase-1 predominantly regulates mTORC1 signaling. Metabolic analysis revealed that Regnase-1 participates in purine metabolism and energy metabolism during inflammation. Furthermore, increased expression of ectonucleotidases contributed to the resolution of acute inflammation in Regnase-1∆IEC mice. These findings provide evidence that Regnase-1 deficiency has beneficial effects on the prevention and/or blocking of intestinal inflammatory disorders.


Assuntos
Colo/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Purinas/metabolismo , Regeneração/fisiologia , Ribonucleases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Colite/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Transdução de Sinais/fisiologia
13.
Oncotarget ; 6(41): 43310-25, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26621832

RESUMO

Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer.


Assuntos
Antineoplásicos/farmacologia , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/patologia , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Nus , Microscopia Confocal , Simulação de Acoplamento Molecular , Infecções por Papillomavirus/complicações , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Immunol ; 191(12): 6030-6039, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24198285

RESUMO

The ssDNA-dependent deoxycytidine deaminase apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (A3G) is a potent restrictive factor against HIV-1 virus lacking viral-encoded infectivity factor (Vif) in CD4(+) T cells. A3G antiretroviral activity requires its encapsulation into HIV-1 virions. In this study, we show that germinal center-associated nuclear protein (GANP) is induced in activated CD4(+) T cells and physically interacts with A3G. Overexpression of GANP augments the A3G encapsidation into the virion-like particles and ΔVif HIV-1 virions. GANP is encapsidated in HIV-1 virion and modulates A3G packaging into the cores together with cellular RNAs, including 7SL RNA, and with unspliced HIV-1 genomic RNA. GANP upregulation leads to a significant increase in A3G-catalyzed G→A hypermutation in the viral genome and suppression of HIV-1 infectivity in a single-round viral infection assay. Conversely, GANP knockdown caused a marked increase in HIV-1 infectivity in a multiple-round infection assay. The data suggest that GANP is a cellular factor that facilitates A3G encapsidation into HIV-1 virions to inhibit viral infectivity.


Assuntos
Acetiltransferases/fisiologia , Linfócitos T CD4-Positivos/imunologia , Citidina Desaminase/fisiologia , HIV-1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Vírion/metabolismo , Desaminase APOBEC-3G , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/biossíntese , Acetiltransferases/química , Acetiltransferases/genética , Células Cultivadas , Citidina Desaminase/química , Genes vif , HIV-1/ultraestrutura , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ativação Linfocitária , Mutação , Mapeamento de Interação de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Citoplasmático Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Viral/genética , RNA Viral/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Regulação para Cima , Vírion/ultraestrutura , Virulência , Replicação Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/deficiência , Pequeno RNA não Traduzido
15.
Chem Pharm Bull (Tokyo) ; 61(3): 258-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23449195

RESUMO

The minocycline hydrochloride (MH), at higher doses, is useful in the treatment of neurodegenerative disorders and owing to its antioxidant potential, it may have nootropic effects. MH loaded nanoparticles (MHNP) were coated with tween 80 (cMHNP) to improve its brain uptake followed by their optimization employing two factor-three level (3(2)) central composite design (CCD) in order to minimize particle size and maximize drug entrapment efficiency (DEE) and validated. The optimized formulations were further subjected to in vitro drug release study; in vivo biodistribution studies in male wistar rats. The pharmacodynamic study was carried out using elevated plus maze (EPM) and Morris water maze (MWM) behavioral models for nootropic activity in swiss albino mice; and biochemical estimations (acetylcholine esterase, reduced glutathione, malondialdehyde and brain nitrite level). After intravenous (i.v.) administration, the concentration of MH in brain of cMHNP (6.21±0.64 µg/mL) treated rats was significantly higher with MH solution treated (0.70±0.06 µg/mL) as well as MHNP (1.03±0.12 µg/mL) treated animals. Pharmacodynamic studies revealed a significant improvement in memory of MH, MHNP and cMHNP treated swiss albino mice than saline treated control group. However, cMHNP revealed maximum decrease in transfer latency (TL) in EPM and maximum increase in time spent in target quadrant (TSTQ) in MWM. Although cMHNP did not produce significant change in brain acetylcholinesterase, but, significantly increased reduced glutathione, malondialdehyde and reduced brain nitrite level as compared to saline, MH solution and MHNP treated groups. The results suggest that cMHNP is a promising candidate for improved brain uptake of MH with better nootropic effect.


Assuntos
Encéfalo/efeitos dos fármacos , Quitosana/administração & dosagem , Minociclina/administração & dosagem , Minociclina/farmacocinética , Nanopartículas/administração & dosagem , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Catalase/metabolismo , Química Farmacêutica , Quitosana/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Minociclina/química , Nanopartículas/química , Nitritos/metabolismo , Tamanho da Partícula , Polissorbatos/administração & dosagem , Polissorbatos/química , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA