Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 218: 114764, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206669

RESUMO

Urinary bladder cancer (UBC) is one of the most common cancers and has notoriously high risk of recurrence and mortality across the globe. Current clinical initial diagnostic approaches are either invasive or lacks sensitivity. In this study, an attempt has been made to invent a cost-effective, novel, portable diagnostic device based on the environmental sensitive fluorophores namely Nile Red (NR), Eosin Y (EY) and Rose Bengal (RB). They act as sensing agents for detecting volatile organic compounds (VOC) exclusively present in the urine sample of UBC patients and differentiate the UBC samples from the healthy control group. Upon exposure with a particular group of VOCs, a significant amount of increment in fluorescence intensities of NR, EY and RB were detected and recorded in our indigenously developed "NABIL" device. To check the performance of NABIL, the data collected from the device was compared with the conventional techniques by arranging a clinical trial with 21 healthy controls and 52 UBC patients. With the assistance of our analysis technique based on LabVIEW platform, very high sensitivity and accuracy from healthy controls have been achieved. For UBC patients, it shows impressive diagnostic results. In addition, depending on the sample processing mechanism, NABIL device can also reveal the grade of UBC and prognosis under treatment. Overall, this study contributes a novel, non-invasive, easy-to-use, inexpensive, real-time, accurate method for selectively UBC diagnosis, which can be useful for personalized care/diagnosis and postoperative surveillance, resulting in saving more lives.


Assuntos
Técnicas Biossensoriais , Neoplasias da Bexiga Urinária , Compostos Orgânicos Voláteis , Humanos , Biomarcadores , Biomarcadores Tumorais/urina , Amarelo de Eosina-(YS) , Rosa Bengala , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina
2.
Trans Indian Natl Acad Eng ; 6(2): 355-364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35837575

RESUMO

Regular monitoring of electrolyte balance is essential for patients suffering from chronic kidney disease (CKD), particularly those undergoing dialysis. In the context of the recent COVID-19 pandemic, more severe forms of infection are observed in elderly individuals and patients having co-morbidities like CKD. The repeated blood tests for the monitoring of electrolyte balance predispose them not only to COVID-19 but also other to hospital-acquired infections (HAI). Therefore, a non-invasive method for easy detection of essential electrolyte (K+ and Na+) levels is urgently needed. In this study, we developed an optical emission spectroscopy-based non-invasive device for simultaneous monitoring of salivary Na+ and K+ levels in a fast and reliable way. The device consisted of a closed spark chamber, micro-spectrometer, high voltage spark generator, electronic circuits, optical fiber, and an indigenously developed software based on the LabVIEW platform. The optical emission originating from the biological sample (i.e., saliva) due to recombination of ions energized by impingement of electrons returning from high voltage spark provides necessary information about the concentration of electrolytes. A small-scale clinical trial on 30 healthy human subjects shows the potential of the indigenously developed device in determining salivary Na + and K+ concentration. The low-cost, portable, point-of-care device requires only 2 mL of sample, and can simultaneously measure 1.0-190.0 mM Na+, and 1.0-270.9 mM K+ . To our understanding, the present work will find its relevance in combating COVID-19 morbidities, along with regular CKD patient-care.

3.
Front Oncol ; 10: 529132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194588

RESUMO

Molecular interaction of aromatic dyes with biological macromolecules are important for the development of minimally invasive disease diagnostic biotechnologies. In the present work, we have used Toluidine Blue (TB) as a model dye, which is a well-known staining agent for the diagnosis of oral cancer and have studied the interaction of various biological macromolecules (protein and DNA) with the dye at different pH. Our spectroscopic studies confirm that TB interacts with Human Serum Albumin (HSA), a model protein at very high pH conditions which is very hard to achieve physiologically. On the other hand, TB significantly interacts with the DNA at physiological pH value (7.4). Our molecular studies strengthen the understanding of the Toluidine Blue staining of cancer cells, where the relative ratio of the nucleic acids is higher than the normal intracellular content. We have also developed a non-invasive, non-contact spectroscopic technique to explore the possibility of quantitatively detecting oral cancer by exploiting the interaction of TB with DNA. We have also reported development of a prototype named "Oral-O-Scope" for the detection of Oral cancer and have carried out human studies using the prototype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA