Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 29(1): 103819, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37940034

RESUMO

Mitochondria are the primary organelles of cells involved in various physiochemical and biochemical processes. Owing to their crucial role in cellular metabolism, mitochondria are favored therapeutic targets for the treatment and prevention of cancers. Recently, there has been growing interest in the use of mitochondria-specific functional nanoparticles for targeted delivery of therapeutic agents to these organelles. Among several nanosystems, liposomes have garnered considerable attention owing to their exceptional drug delivery capabilities, biocompatibility, biodegradability, ease of manufacturing and established regulatory guidelines for market approval. In this context, the present review provides a brief insight into the association between mitochondria and tumor formation and advantages of mitochondrial targeting in cancer therapy. Furthermore, it discusses mitochondria-targeting functional liposomes for the treatment of various cancers, such as breast, lung, colon, among others.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/uso terapêutico , Mitocôndrias/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Pulmão/metabolismo
2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765117

RESUMO

Non-small-cell lung cancer (NSCLC) mortality and new case rates are both on the rise. Most patients have fewer treatment options accessible due to side effects from drugs and the emergence of drug resistance. Bedaquiline (BQ), a drug licensed by the FDA to treat tuberculosis (TB), has demonstrated highly effective anti-cancer properties in the past. However, it is difficult to transport the biological barriers because of their limited solubility in water. Our study developed a UPLC method whose calibration curves showed linearity in the range of 5 ng/mL to 500 ng/mL. The UPLC method was developed with a retention time of 1.42 and high accuracy and precision. Its LOQ and LOD were observed to be 10 ng/mL and 5 ng/mL, respectively, whereas in the formulation, capmul MCM C10, Poloxamer 188, and PL90G were selected as solid lipids, surfactants, and co-surfactants, respectively, in the development of SLN. To combat NSCLC, we developed solid lipid nanoparticles (SLNs) loaded with BQ, whereas BQ suspension is prepared by the trituration method using acacia powder, hydroxypropyl methylcellulose, polyvinyl acrylic acid, and BQ. The developed and optimized BQ-SLN3 has a particle size of 144 nm and a zeta potential of (-) 16.3 mV. whereas BQ-loaded SLN3 has observed entrapment efficiency (EE) and loading capacity (LC) of 92.05% and 13.33%, respectively. Further, BQ-loaded suspension revealed a particle size of 1180 nm, a PDI of 0.25, and a zeta potential of -0.0668. whereas the EE and LC of BQ-loaded suspension were revealed to be 88.89% and 11.43%, respectively. The BQ-SLN3 exhibited insignificant variation in particle size, homogeneous dispersion, zeta potential, EE, and LC and remained stable over 90 days of storage at 25 °C/60% RH, whereas at 40 °C/75% RH, BQ-SLN3 observed significant variation in the above-mentioned parameters and remained unstable over 90 days of storage. Meanwhile, the BQ suspension at both 25 °C (60% RH) and 40 °C (75% RH) was found to be stable up to 90 days. The optimized BQ-SLN3 and BQ-suspension were in vitro gastrointestinally stable at pH 1.2 and 6.8, respectively. The in vitro drug release of BQ-SLN3 showed 98.19% up to 12 h at pH 7.2 whereas BQ suspensions observed only 40% drug release up to 4 h at pH 7.2 and maximum drug release of >99% within 4 h at pH 4.0. The mathematical modeling of BQ-SLN3 followed first-order release kinetics followed by a non-Fickian diffusion mechanism. After 24 to 72 h, the IC50 value of BQ-SLN3 was 3.46-fold lower than that of the BQ suspension, whereas the blank SLN observed cell viability of 98.01% and an IC50 of 120 g/mL at the end of 72 h. The bioavailability and higher biodistribution of BQ-SLN3 in the lung tumor were also shown to be greater than those of the BQ suspension. The effects of BQ-SLN3 on antioxidant enzymes, including MDA, SOD, CAT, GSH, and GR, in the treated group were significantly improved and reached the level nearest to that of the control group of rats over the cancer group of rats and the BQ suspension-treated group of rats. Moreover, the pharmacodynamic activity resulted in greater tumor volume and tumor weight reduction by BQ-SLN3 over the BQ suspension-treated group. As far as we are aware, this is the first research to look at the potential of SLN as a repurposed oral drug delivery, and the results suggest that BQ-loaded SLN3 is a better approach for NSCLC due to its better action potential.

3.
Gels ; 9(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826301

RESUMO

Natural anti-inflammatory nutraceuticals may be useful in preventing rheumatoid arthritis from worsening. Resveratrol (RV) and chia seed oil, having antioxidant potential, can assist in avoiding oxidative stress-related disorders. This investigation developed and evaluated resveratrol-loaded chia seed oil-based nanoemulsion (NE) gel formulations through in vitro and in vivo studies. The physical stability and in vitro drug permeability of the chosen formulations (NE1 to NE10) were studied. The optimized RV-loaded nanoemulsion (NE2) had droplets with an average size of 37.48 nm that were homogeneous in shape and had a zeta potential of -18 mV. RV-NE2, with a permeability of 98.21 ± 4.32 µg/cm2/h, was gelled with 1% carbopol-940P. A 28-day anti-arthritic assessment (body weight, paw edema, and levels of pro-inflammatory mediators including TNF-α, IL-6, IL-1ß, and COX-2) following topical administration of RV-NE2 gel showed significant reversal of arthritic symptoms in arthritic Wistar rats induced by Freund's complete adjuvant injection. Therefore, RV-NE2 gel demonstrated the potential to achieve local therapeutic benefits in inflammatory arthritic conditions due to its increased topical bioavailability and balancing of pro-inflammatory mediators.

4.
Polymers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36771901

RESUMO

This research work is focused on pharmacokinetic and biochemical experiments to assess baicalin-loaded lipid-polymer hybrid nanoparticles (LPHNPs) with colon-targeting specificity. The nanoprecipitation method was used to develop the LPHNPs, and the characterized formulation revealed the 184.3 nm particle size, PDI of 0.177, spherical shape, and zeta potential of -19.8 mV. The baicalin LPHNPs are said to be poorly absorbed in the stomach and small intestine, and in vitro drug release tests have shown that the drug is released mostly in the caecal fluid. Additionally, the LPHNPs showed stability and nonsignificant drug loss at 25 °C for 3 months. The least viable population of baicalin-loaded LPHNPs was detected at a lower IC50 value after 48 h, and no cytotoxicity was observed by blank suspension and blank LPHNPs up to the concentration of 100 µg/mL. Apart from this, the pharmacokinetics study showed that baicalin from LPHNPs is much less absorbed and least available in the blood plasma and maximum available in the colon. Concurrently, organ distribution studies demonstrated that baicalin-loaded LPHNPs were distributed more widely in the colon compared to baicalin suspension. Moreover, baicalin-loaded LPHNPs were found to be superior to a baicalin suspension in reducing elevated liver enzyme levels. In a nutshell, baicalin-loaded LPHNPs show superior efficacy and can be maximally localized into the colon rectal cancer along with systemic availability of the drug.

5.
J Chromatogr Sci ; 61(4): 329-338, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36644892

RESUMO

The current research work describes the development of a simple, fast, sensitive and efficient bioanalytical UPLC/MS-MS method for the simultaneous estimation of diclofenac and resveratrol in mice skin samples. Quetiapine was used as an internal standard (IS). Analytical separation was performed on ACQUITY UPLC C18 Column (2.1 × 100 mm; 1.7 µm) using ammonium acetate (5 mM) in water and methanol (B) with isocratic elution at ratio of (50, 50 v/v) and flow rate of 0.4 mL/min. The duration of separation was maintained for 3 min. Electrospray ionization mass spectrometry in a positive and negative ionization mode was used for detection. Selective ion mode monitoring was used for the quantification of m/z 296.025> 249.93 for diclofenac, m/z 229.09 > 143.03 for resveratrol and MRM/ES+ve mode applied in m/z 384.25> 253.189 for IS transitions from parent to daughter ion. The lower detection and quantification limits were accomplished, and precision (repeatability and intermediate precision) with a coefficient of variation below 10% produced satisfactory results. The developed bioanalytical method was found to be useful for its suitability for the dermatokinetic evaluation of treatments through rat skin. Improvement in AUC (1.58-fold for diclofenac and 1.60-fold for resveratrol) and t1/2 in the dermis (2.13 for diclofenac and 2.21-fold for resveratrol) followed by epidermis was observed for diclofenac and resveratrol-loaded liposomal gel formulation over the conventional gel. Overall, the developed method for the dermatokinetic studies of the above-mentioned dual drugs-loaded liposome gel was found to be reproducible and effective for bioanalytical.


Assuntos
Pele , Lipossomos/química , Géis/química , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Animais , Camundongos , Pele/química , Diclofenaco/química , Resveratrol/química , Calibragem
6.
ACS Omega ; 7(11): 9452-9464, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350323

RESUMO

The present work describes the development and characterization of liquid crystalline nanoparticles of hispolon (HP-LCNPs) for treating hepatocellular carcinoma. HP-LCNPs were prepared by a top-down method utilizing GMO as the lipid and Pluronic F-127 as the polymeric stabilizer. The prepared formulations (HP1-HP8) were tested for long-term stability, where HP5 showed good stability with a particle size of 172.5 ± 0.3 nm, a polydispersity index (PDI) of 0.38 ± 0.31 nm, a zeta potential of -10.12 mV ± 0.05, an entrapment efficiency of 86.81 ± 2.5%, and a drug loading capacity of 12.51 ± 1.12%. Optical photomicrography and transmission electron microscopy images demonstrated a consistent, low degree of aggregation and a spherical shape of LCNPs. The effect of temperature and pH on the optimized formulation (HP5) indicated good stability at 45 °C and at pH between 2 and 5. In vitro gastrointestinal stability indicated no significant change in the particle size, PDI, and entrapment efficiency of the drug. The drug release study exhibited a biphasic pattern in simulated gastric fluid (pH 1.2) for 2 h and simulated intestinal fluid (pH 7.4) for up to 24 h, while the best fitting of the profile was observed with the Higuchi model, indicating the Fickian diffusion mechanism. The in vivo pharmacokinetic study demonstrated nearly 4.8-fold higher bioavailability from HP5 (AUC: 1774.3 ± 0.41 µg* h/mL) than from the HP suspension (AUC: 369.11 ± 0.11 µg* h/mL). The anticancer activity evaluation revealed a significant improvement in antioxidant parameters and serum hepatic biomarkers (SGOT, SGPT, ALP, total bilirubin, and GGT) in the diethyl nitrosamine-treated group of rats with the optimized LCNP formulation (HP5) vis-à-vis HP suspension.

7.
Biotechnol Appl Biochem ; 69(5): 2205-2221, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34775646

RESUMO

The present research work describes development of dual drug-loaded lipid-polymer hybrid nanoparticles (LPHNPs) of anticancer therapeutics for the management of colon cancer. The epidermal growth factor (EGF)-functionalized LPHNPs coloaded with 5-fluorouracil (FU) and sulforaphane (SFN) were prepared by one-step nanoprecipitation method. Box-Behnken design was applied for optimizing the material attributes and process parameters. The optimized LPHNPs revealed particle size 198 nm, polydispersity index 0.3, zeta potential -25.3 mV, and drug loading efficiency 19-20.3% for 5-FU and SFN, respectively. EGF functionalization on LPHNPs was confirmed from positive magnitude of zeta potential to 21.3 mV as compared with the plain LPHNPs. In vitro drug release performance indicated sustained and non-Fickian mechanism release nature of the drugs from LPHNPs. Anticancer activity evaluation in HCT-15 colon cancer cells showed significant reduction (p < 0.001) in the cell growth and cytotoxicity of the investigated drugs from various treatments in the order: EGF-functionalized LPHNPs > plain LPHNPs > free drug suspensions. Overall, the research work corroborated improved treatment efficacy of EGF-functionalized LPHNPs for delivering chemotherapeutic agents for the management of colon carcinoma.


Assuntos
Carcinoma , Neoplasias do Colo , Nanopartículas , Humanos , Polímeros , Disponibilidade Biológica , Fluoruracila/farmacologia , Fator de Crescimento Epidérmico , Lipídeos , Sobrevivência Celular , Tamanho da Partícula , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos
8.
Drug Deliv ; 28(1): 1972-1981, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34565260

RESUMO

Crotamiton (CRT) is a commonly approved drug prescribed for the scabies treatment in many countries across the globe. However, poor aqueous solubility and low bioavailability, and side effects restrict its use. To avoid such issues, an appropriate carrier system is necessary which can address the aforementioned challenges for attaining enhanced biopharmaceutical attributes. The current study intends to provide a detailed account on the development and evaluation of CRT-loaded microemulsion (ME) hydrogel formulation containing tea tree oil (TTO) for improved drug delivery for scabies treatment in a safe and effective manner. Pseudo-ternary phase diagrams were constructed with TTO as the oily phase, and Cremophor®EL was used as the surfactant in a mass ratio 2:1 with co-surfactants (mixture of phospholipid 90G and Transcutol®P), and aqueous solution as the external phase. The optimized drug-loaded ME formulation was evaluated for skin penetration, retention, compliance, and dermatokinetics. The nonirritant behavior of the formulation was revealed by skin histopathology, which showed no changes in normal skin histology. In comparison to the conventional product, dermatokinetic experiments revealed that CRT has greater penetration and distribution in the epidermis of the mice skin. The findings imply that the proposed lipid-based ME hydrogel can aid in the resolution of CRT issues by providing a better and safer delivery option to epidermis and deeper epidermis in substantial quantities.


Assuntos
Emulsões/química , Hidrogéis/química , Escabiose/tratamento farmacológico , Óleo de Melaleuca/química , Toluidinas/farmacocinética , Animais , Química Farmacêutica , Portadores de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Camundongos , Propriedades de Superfície , Tensoativos/química , Toluidinas/administração & dosagem
9.
Biomed Pharmacother ; 138: 111461, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706131

RESUMO

The present work describes the systematic development of paclitaxel and naringenin-loaded solid lipid nanoparticles (SLNs) for the treatment of glioblastoma multiforme (GBM). So far only temozolomide therapy is available for the GBM treatment, which fails by large amount due to poor brain permeability of the drug and recurrent metastasis of the tumor. Thus, we investigated the drug combination containing paclitaxel and naringenin for the treatment of GBM, as these drugs have individually demonstrated significant potential for the management of a wide variety of carcinoma. A systematic product development approach was adopted where risk assessment was performed for evaluating the impact of various formulation and process parameters on the quality attributes of the SLNs. I-optimal response surface design was employed for optimization of the dual drug-loaded SLNs prepared by micro-emulsification method, where Percirol ATO5 and Dynasan 114 were used as the solid lipid and surfactant, while Lutrol F188 was used as the stabilizer. Drug loaded-SLNs were subjected to detailed in vitro and in vivo characterization studies. Cyclic RGD peptide sequence (Arg-Gly-Asp) was added to the formulation to obtain the surface modified SLNs which were also evaluated for the particle size and surface charge. The optimized drug-loaded SLNs exhibited particle size and surface charge of 129 nm and 23 mV, drug entrapment efficiency >80% and drug loading efficiency >7%. In vitro drug release study carried out by micro dialysis bag method indicated more than 70% drug was release observed within 8 h time period. In vivo pharmacokinetic evaluation showed significant improvement (p < 0.05) in drug absorption parameters (Cmax and AUC) from the optimized SLNs over the free drug suspension. Cytotoxicity evaluation on U87MG glioma cells indicated SLNs with higher cytotoxicity as compared to that of the free drug suspension (p < 0.05). Evaluation of uptake by florescence measurement indicated superior uptake of SLNs tagged with dye over the plain dye solution. Overall, the dual drug-loaded SLNs showed better chemoprotective effect over the plain drug solution, thus construed superior anticancer activity of the developed nanoformulation in the management of glioblastoma multiforme.


Assuntos
Neoplasias Encefálicas , Sistemas de Liberação de Medicamentos/métodos , Flavanonas/administração & dosagem , Glioblastoma , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos/efeitos dos fármacos , Liberação Controlada de Fármacos/fisiologia , Antagonistas de Estrogênios/administração & dosagem , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/metabolismo , Feminino , Flavanonas/síntese química , Flavanonas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Lipídeos , Masculino , Nanopartículas/química , Paclitaxel/síntese química , Paclitaxel/metabolismo , Tamanho da Partícula , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/síntese química , Ratos , Ratos Wistar
10.
Curr Drug Targets ; 22(7): 779-792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33302831

RESUMO

Hepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high incidence and mortality rate worldwide among several types of cancers. A large variety of chemotherapeutic agents employed for the treatment have a limited success rate owing to their limited site-specific drug targeting ability. Thus, there is a demand to develop novel approaches for the treatment of HCC. With advancements in nanotechnology-based drug delivery approaches, the challenges of conventional chemotherapy have been continuously decreasing. Nanomedicines constituted of lipidic and polymeric composites provide a better platform for delivering and opening new pathways for HCC treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles, nanotubes, micelles, quantum dots, etc., has been investigated in the treatment of HCC. These nanocarriers are considered to be highly effective clinically for delivering chemotherapeutic drugs with high site-specificity ability and therapeutic efficiency. The present review highlights the current focus on the application of nanocarrier systems using various ligand-based receptor-specific targeting strategies for the treatment and management of HCC. Moreover, the article has also included information on the current clinically approved drug therapy for hepatocellular carcinoma treatment and updates of regulatory requirements for approval of such nanomedicines.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Carcinoma Hepatocelular/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Nanotecnologia
11.
Expert Opin Drug Deliv ; 18(4): 489-513, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33225771

RESUMO

Introduction: Cancer has always been a menace for the society. Hepatocellular carcinoma (HCC) is one of the most lethal and 3rdlargest causes of deaths around the world.Area covered: The emergence of natural actives is considered as the greatest boon for fighting cancer. The natural actives take precedence over the traditional chemotherapeutic drugs in terms of their multi-target, multi-level and coordinated effects in the treatment of HCC. Literature reports have indicated the tremendous potential of bioactive natural products in inhibiting the HCC via molecular drug targeting, augmented bioavailability, and the ability for both passive or active targeting and stimulus-responsive drug release characteristics. This review provides a newer treatment approaches involved in the mechanism of action of different natural actives used for the HCC treatment via different molecular pathways. Besides, the promising advantage of natural bioactive-loaded nanocarriers in HCC treatment has also been also presented in this review. Expert opinion: The remarkable outcomes have been observed with therapeutic efficacy of the nanocarriers of natural actives in the treatment of HCC.Furthermore, it requires a thorough assessment of the safety and efficacy evaluation of the nanocarriers for the delivery of targeted natural active ingredients in HCC.].


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Carcinoma Hepatocelular/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico
12.
Curr Pharm Biotechnol ; 21(15): 1674-1687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614743

RESUMO

BACKGROUND: Metal Nanoparticles (NPs) have been widely used for various applications in biomedical sciences, including in drug delivery, and as therapeutic agents, but limited owing to their toxicity towards the healthy tissue. This warrants an alternative method, which can achieve the desired activity with much reduced or no toxicity. Being a biological product, Withania somnifera (W. somnifera) is environment friendly, besides being less toxic as compared to metal-based NPs. However, the exact mechanism of action of W. somnifera for its antibacterial activities has not been studied so far. OBJECTIVE: To develop "silver nanoparticles with root extract of W. somnifera (AgNPs-REWS)" for antimicrobial and anticancer activities. Furthermore, the analysis of their mechanism of action will be studied. METHODS: Using the in-silico approach, the molecular docking study was performed to evaluate the possible antibacterial mechanism of W. somnifera phytochemicals such as Anaferine, Somniferine, Stigmasterol, Withaferin A, Withanolide- A, G, M, and Withanone by the inhibition of Penicillin- Binding Protein 4 (PBP4). Next, we utilized a bottom-up approach for the green synthesis of AgNPs- REWS, performed an in-detail phytochemical analysis, confirmed the AgNPs-REWS by SEM, UVvisible spectroscopy, XRD, FT-IR, and HPLC. Eventually, we examined their antibacterial activity. RESULTS: The result of molecular docking suggests that WS phytochemicals (Somniferine, Withaferin A, Withanolide A, Withanolide G, Withanolide M, and Withanone) possess the higher binding affinity toward the active site of PBP4 as compared to the Ampicillin (-6.39 kcal/mol) reference molecule. These phytochemicals predicted as potent inhibitors of PBP4. Next, as a proof-of-concept, AgNPs- REWS showed significant antibacterial effect as compared to crude, and control; against Xanthomonas and Ralstonia species. CONCLUSION: The in-silico and molecular docking analysis showed that active constituents of W. somnifera such as Somniferine, Withaferin A, Withanolide A, Withanolide G, Withanolide M, and Withanone possess inhibition potential for PBP4 and are responsible for the anti-bacterial property of W. somnifera extract. This study also establishes that AgNPs via the green synthesis with REWS showed enhanced antibacterial activity towards pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Proteínas de Ligação às Penicilinas/metabolismo , Extratos Vegetais/farmacologia , Prata/farmacologia , Withania/metabolismo , Antibacterianos/química , Domínio Catalítico , Simulação de Acoplamento Molecular , Extratos Vegetais/metabolismo , Raízes de Plantas/metabolismo , Ligação Proteica , Ralstonia solanacearum/efeitos dos fármacos , Prata/química , Xanthomonas campestris/efeitos dos fármacos
15.
Biochim Biophys Acta ; 1790(4): 249-59, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19233247

RESUMO

Ralstonia solanacearum lectin (RSL), that might be involved in phytopathogenicity, has been defined as LFuc>>Man specific. However, the effects of polyvalency of glycotopes and mammalian structural units on binding have not been established. In this study, recognition factors of RSL were comprehensively examined with natural multivalent glycotopes and monomeric ligands using enzyme linked lectin-sorbent and inhibition assays. Among the glycans tested, RSL reacted strongly with multivalent blood group A(h) (GalNAcalpha1-3[Fucalpha1-2]Gal) and H (Fucalpha1-2Gal) active glycotopes, followed by B(h) (Galalpha1-3[Fucalpha1-2]Gal), Le(a) (Galbeta1-3[Fucalpha1-4]GlcNAc) and Le(b) (Fucalpha1-2Galbeta1-3[Fucalpha1-4]GlcNAc) active glycotopes. But weak or negligible binding was observed for blood group precursors having Galbeta1-3/4GlcNAcbeta1- (Ibeta/IIbeta) residues or Galbeta1-3GalNAcalpha1- (Talpha), GalNAcalpha1-Ser/Thr (Tn) bearing glycoproteins. These results indicate that the density and degree of exposure of multivalent ligands of alpha1-2 linked LFuc to Gal at the non-reducing end is the most critical factor for binding. An inhibition study with monomeric ligands revealed that the combining site of RSL should be of a groove type to fit trisaccharide binding with highest complementarity to blood group H trisaccharide (H(L); Fucalpha1-2Galbeta1-4Glc). The outstandingly broad RSL saccharide-binding profile might be related to the unusually wide spectrum of plants that suffer from R. solanacearum pathogenicity and provide ideas for protective antiadhesion strategies.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Antígenos do Grupo Sanguíneo de Lewis/química , Lectinas de Plantas/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Animais , Sequência de Carboidratos , Dissacarídeos/química , Humanos , Dados de Sequência Molecular , Mucinas/química , Suínos , Trissacarídeos/química
16.
Biochimie ; 90(11-12): 1769-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18809460

RESUMO

Previous reports on the carbohydrate specificities of Amaranthus caudatus lectin (ACL) and peanut agglutinin (PNA, Arachis hypogea) indicated that they share the same specificity for the Thomsen-Friedenreich (T(alpha), Galbeta1-3GalNAcalpha1-Ser/Thr) glycotope, but differ in monosaccharide binding--GalNAc>>Gal (inactive) for ACL; Gal>>GalNAc (weak) with respect to PNA. However, knowledge of the recognition factors of these lectins was based on studies with a small number monosaccharides and T-related oligosaccharides. In this study, a wider range of interacting factors of ACL and PNA toward known mammalian structural units, natural polyvalent glycotopes and glycans were examined by enzyme-linked lectinosorbent and inhibition assays. The results indicate that the main recognition factors of ACL, GalNAc was the only monosaccharide recognized by ACL as such, its polyvalent forms (poly GalNAcalpha1-Ser/Thr, Tn in asialo OSM) were not recognized much better. Human blood group precursor disaccharides Galbeta1-3/4GlcNAcbeta (I(beta)/II(beta)) were weak ligands, while their clusters (multiantennary II(beta)) and polyvalent forms were active. The major recognition factors of PNA were a combination of alpha or beta anomers of T disaccharide and their polyvalent complexes. Although I(beta)/II(beta) were weak haptens, their polyvalent forms played a significant role in binding. From the 50% molar inhibition profile, the shape of the ACL combining site appears to be a cavity type and most complementary to a disaccharide of Galbeta1-3GalNAc (T), while the PNA binding domain is proposed to be Galbeta1-3GalNAcalpha or beta1--as the major combining site with an adjoining subsite (partial cavity type) for a disaccharide, and most complementary to the linear tetrasaccharide, Galbeta1-3GalNAcbeta1-4Galbeta1-4Glc (T(beta)1-4L, asialo GM(1) sequence). These results should help us understand the differential contributions of polyvalent ligands, glycotopes and subtopes for the interaction with these lectins to binding, and make them useful tools to study glycosciences, glycomarkers and their biological functions.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Dissacarídeos/química , Glicoproteínas/química , Lectinas/química , Aglutinina de Amendoim/química , Animais , Antígenos de Grupos Sanguíneos/química , Humanos , Aglutinina de Amendoim/metabolismo
17.
Glycobiology ; 17(2): 165-84, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17060369

RESUMO

Gene duplication and sequence divergence are driving forces toward establishing protein families. To examine how sequence changes affect carbohydrate specificity, the two closely related proto-type chicken galectins CG-14 and CG-16 were selected as models. Binding properties were analyzed using a highly sensitive solid-phase assay. We tested 56 free saccharides and 34 well-defined glycoproteins. The two galectins share preference for the II (Galbeta1-4GlcNAc) versus I (Galbeta1-3GlcNAc) version of beta-galactosides. A pronounced difference is found owing to the reactivity of CG-14 with histo-blood group ABH active oligosaccharides and A/B active glycoproteins. These experimental results prompted to determine activity-structure correlations by modeling. Computational analysis included consideration of the flexibility of binding partners and the presence of water molecules. It provided a comparative description of complete carbohydrate recognition domains, which had so far not been characterized in animal galectins. The structural models assigned II, I selectivity to a region downstream of the central Trp moiety. Docking revealed that the tetrasaccharides can be accommodated in their free-state low-energy conformations. CG-14's preference for A versus B epitopes could be attributed to a contact between His124 and the N-acetyl group of GalNAc. Regarding intergalectin comparison, the Ala53/Cys51 exchange affects the interaction potential of His54/His52. Close inspection of simulated dynamic interplay revealed reorientation of His124 at the site of the His124/Glu123 substitution, with potential impact on ligand dissociation. In summary, this study identifies activity differences and provides information on their relation to structural divergence, epitomizing the value of this combined approach beyond galectins.


Assuntos
Evolução Molecular , Galactosídeos/metabolismo , Galectinas/química , Galectinas/metabolismo , Lectinas/química , Sequência de Aminoácidos , Animais , Antígenos Glicosídicos Associados a Tumores/metabolismo , Galinhas , Biologia Computacional , Galectinas/antagonistas & inibidores , Duplicação Gênica , Humanos , Lectinas/antagonistas & inibidores , Lectinas/metabolismo , Ligantes , Modelos Biológicos , Dados de Sequência Molecular , Oligossacarídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade
18.
Mol Immunol ; 44(4): 451-62, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16581130

RESUMO

The carbohydrate binding properties of a novel member of the subfamily of galactose-specific jacalin-related lectin isolated from the bark of black mulberry (Morus nigra) (Morniga G) was studied in detail by enzyme-linked lectinosorbent and inhibition assays using panels of monomeric saccharides, mammalian polyvalent glycotopes and polysaccharides. Among the natural glycans tested for lectin binding, Morniga G reacted best with glycoproteins (gps) presenting a high density of tumor-associated carbohydrate antigens Tn (GalNAcalpha1-Ser/Thr) and Talpha (Galbeta1-3GalNAcalpha1-). Their reactivities, on a nanogram basis, were up to 72.5, 3.9x10(3), 6.0x10(3), 8.8x10(3) and 2.9x10(4) times higher than that of Tn-containing glycopeptides (M.W.<3000 Da), monomeric T, Tn, GalNAc and Gal, respectively. It also reacted well with many multi-antennary N-glycans with II (Galbeta1-4GlcNAc) termini, ABH histo-blood group antigens and their precursors containing high densities of I/II and T/Tn glycotopes, and sialylated T/Tn. Among the mono-, di- and oligosaccharides tested, Thomsen-Friedenreich (T) disaccharide with aromatic aglycon [Galbeta1-3GalNAcalpha1-benzyl (Talpha1-benzyl)] and Tn glycopeptides were the best inhibitors. Molecular modeling and docking studies indicated the occurrence of a primary GalNAcalpha1- and Galbeta1-3GalNAc glycotope-binding site in Morniga G. Using a recently proposed system [Wu, A.M., 2003. Carbohydrate structural units in glycoproteins and polysaccharides as important ligands for Gal and GalNAc reactive lectins. J. Biomed. Sci. 10, 676-688], the binding properties of the combining sites of Morniga G can be defined as follows: (i) the monosaccharide specificity is GalNAc/Gal>>Man/Glc, GlcNAc and lFuc; (ii) the mammalian glycotope specificity is Talpha1-benzyl>T>Tn>GalNAcbeta1-3Gal (P), while B/E (Galalpha1-3/4Gal), I/II (Galbeta1-3/4GlcNAc), S (GalNAcbeta1-4Gal), F/A (GalNAcalpha1-3GalNAc/Gal) and L (Galbeta1-4Glc) are inactive; (iii) the most active ligand is T/Tn; (iv) simple clustered Tn or triantennary N-glycans with II termini (Tri-II) have limited impact; (v) high-density polyvalent glycotopes play a prominent role for enhancing Morniga G reactivity. These results provide evidence for the binding of this lectin to dense cell surface T/Tn glycoconjugates and facilitate future usage of this lectin in biotechnological and medical applications.


Assuntos
Lectinas de Plantas/metabolismo , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Ligantes , Morus/química , Morus/imunologia , Lectinas de Plantas/química , Lectinas de Plantas/imunologia
19.
Neurochem Res ; 31(5): 619-28, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16770733

RESUMO

Carbohydrate structures between retinal neurons and retinal pigment epithelium (RPE) play an important role in maintaining the integrity of retinal adhesion to underlying RPE, and in retinal detachment pathogenesis. Since relevant knowledge is still in the primary stage, glycotopes on the adult retina of mongrel canines (dog), micropigs and Sprague-Dawley rats were examined by lectino-histochemistry, using a panel of 16 different lectins. Paraffin sections of eyes were stained with biotinylated lectins, and visualized by streptavidin-peroxidase and diaminobenzidine staining. Mapping the affinity profiles, it is concluded that: (i) all sections of the retina reacted well with Morniga M, suggesting that N-linked glycans are present in all layers of the retina; (ii) no detectable human blood group ABH active glycotopes were found among retinal layers; (iii) outer and inner segments contained glycoconjugates rich in ligands reacting with T (alpha) (Galbeta1-3GalNAcalpha1-Ser/Thr) and Tn (GalNAcalpha1-Ser/Thr) specific lectins; (iv) cone cells of retina specifically bound peanut agglutinin (PNA), which recognizes T (alpha) residues and could be used as a specific marker for these photoreceptors; (v) the retinas of rat, dog and pig, had a similar binding profile but with different intensity; (vi) each retinal layer had its own binding characteristic. This information may provide useful background knowledge for normal retinal physiology and miscellaneous retinal diseases, including retinal detachment (RD) and age-related macular degeneration (ARMD).


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Epitopos , Glicoconjugados/metabolismo , Lectinas/metabolismo , Manose/química , Polissacarídeos/metabolismo , Retina/citologia , Animais , Antígenos Glicosídicos Associados a Tumores/química , Configuração de Carboidratos , Sequência de Carboidratos , Cães , Glicoconjugados/química , Glicoproteínas/metabolismo , Humanos , Imuno-Histoquímica , Lectinas/química , Dados de Sequência Molecular , Monossacarídeos/química , Monossacarídeos/metabolismo , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/metabolismo , Polissacarídeos/química , Ratos , Ratos Sprague-Dawley , Suínos
20.
Glycobiology ; 16(6): 524-37, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16540530

RESUMO

Cell-surface glycans are functional docking sites for tissue lectins such as the members of the galectin family. This interaction triggers a wide variety of responses; hence, there is a keen interest in defining its structural features. Toward this aim, we have used enzyme-linked lectinosorbent (ELLSA) and inhibition assays with the prototype rat galectin-5 and panels of free saccharides and glycoconjugates. Among 45 natural glycans tested for lectin binding, galectin-5 reacted best with glycoproteins (gps) presenting a high density of Galbeta1-3/4GlcNAc (I/II) and multiantennary N-glycans with II termini. Their reactivities, on a nanogram basis, were up to 4.3 x 10(2), 3.2 x 10(2), 2.5 x 10(2), and 1.7 x 10(4) times higher than monomeric Galbeta1-3/4GlcNAc (I/II), triantennary-II (Tri-II), and Gal, respectively. Galectin-5 also bound well to several blood group type B (Galalpha1-3Gal)- and A (GalNAcalpha1-3Gal)-containing gps. It reacted weakly or not at all with tumor-associated Tn (GalNAcalpha1-Ser/Thr) and sialylated gps. Among the mono-, di-, and oligosaccharides and mammalian glycoconjugates tested, blood group B-active II (Galalpha1-3Gal beta1-4GlcNAc), B-active IIbeta1-3L (Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc), and Tri-II were the best. It is concluded that (1) Galbeta1-3/4GlcNAc and other Galbeta1-related oligosaccharides with alpha1-3 extensions are essential for binding, their polyvalent form in cellular glycoconjugates being a key recognition force for galectin-5; (2) the combining site of galectin-5 appears to be of a shallow-groove type sufficiently large to accommodate a substituted beta-galactoside, especially with alpha-anomeric extension at the non-reducing end (e.g., human blood group B-active II and B-active IIbeta1-3L); (3) the preference within beta-anomeric positioning is Galbeta1-4 > or = Galbeta1-3 > Galbeta1-6; and (4) hydrophobic interactions in the vicinity of the core galactose unit can enhance binding. These results are important for the systematic comparison of ligand selection in this family of adhesion/growth-regulatory effectors with potential for medical applications.


Assuntos
Galectinas/metabolismo , Glicoproteínas/metabolismo , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Carboidratos , Ensaio de Imunoadsorção Enzimática , Glicosilação , Humanos , Dados de Sequência Molecular , Ligação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA