Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4093, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433804

RESUMO

Bacteria possess elaborate systems to manage reactive oxygen and nitrogen species (ROS) arising from exposure to the mammalian immune system and environmental stresses. Here we report the discovery of an ROS-sensing RNA-modifying enzyme that regulates translation of stress-response proteins in the gut commensal and opportunistic pathogen Enterococcus faecalis. We analyze the tRNA epitranscriptome of E. faecalis in response to reactive oxygen species (ROS) or sublethal doses of ROS-inducing antibiotics and identify large decreases in N2-methyladenosine (m2A) in both 23 S ribosomal RNA and transfer RNA. This we determine to be due to ROS-mediated inactivation of the Fe-S cluster-containing methyltransferase, RlmN. Genetic knockout of RlmN gives rise to a proteome that mimics the oxidative stress response, with an increase in levels of superoxide dismutase and decrease in virulence proteins. While tRNA modifications were established to be dynamic for fine-tuning translation, here we report the discovery of a dynamically regulated, environmentally responsive rRNA modification. These studies lead to a model in which RlmN serves as a redox-sensitive molecular switch, directly relaying oxidative stress to modulating translation through the rRNA and the tRNA epitranscriptome, adding a different paradigm in which RNA modifications can directly regulate the proteome.


Assuntos
Enterococcus faecalis , Proteoma , Animais , Espécies Reativas de Oxigênio , Enterococcus faecalis/genética , Proteoma/genética , Estresse Oxidativo/genética , Processamento Pós-Transcricional do RNA , Adenosina , Proteínas de Choque Térmico , Mamíferos
2.
mBio ; 12(2)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906926

RESUMO

Posttranscriptional regulation of gene expression is central to the development and replication of the malaria parasite, Plasmodium falciparum, within its human host. The timely coordination of RNA maturation, homeostasis, and protein synthesis relies on the recruitment of specific RNA-binding proteins to their cognate target mRNAs. One possible mediator of such mRNA-protein interactions is the N6-methylation of adenosines (m6A), a prevalent mRNA modification of parasite mRNA transcripts. Here, we used RNA protein pulldowns, RNA modification mass spectrometry, and quantitative proteomics to identify two P. falciparum YTH domain proteins (PfYTH.1 and PfYTH.2) as m6A-binding proteins during parasite blood-stage development. Interaction proteomics revealed that PfYTH.2 associates with the translation machinery, including multiple subunits of the eukaryotic initiation factor 3 (eIF3) and poly(A)-binding proteins. Furthermore, knock sideways of PfYTH.2 coupled with ribosome profiling showed that this m6A reader is essential for parasite survival and is a repressor of mRNA translation. Together, these data reveal an important missing link in the m6A-mediated mechanism controlling mRNA translation in a unicellular eukaryotic pathogen.IMPORTANCE Infection with the unicellular eukaryotic pathogen Plasmodium falciparum causes malaria, a mosquito-borne disease affecting more than 200 million and killing 400,000 people each year. Underlying the asexual replication within human red blood cells is a tight regulatory network of gene expression and protein synthesis. A widespread mechanism of posttranscriptional gene regulation is the chemical modification of adenosines (m6A), through which the fate of individual mRNA transcripts can be changed. Here, we report on the protein machinery that "reads" this modification and "translates" it into a functional outcome. We provide mechanistic insight into one m6A reader protein and show that it interacts with the translational machinery and acts as a repressor of mRNA translation. This m6A-mediated phenotype has not been described in other eukaryotes as yet, and the functional characterization of the m6A interactome will ultimately open new avenues to combat the disease.


Assuntos
Regulação da Expressão Gênica , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Adenosina/metabolismo , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Metilação , Plasmodium falciparum/metabolismo , Proteômica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo
3.
Mol Syst Biol ; 16(8): e9569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32816370

RESUMO

Mutually exclusive expression of the var multigene family is key to immune evasion and pathogenesis in Plasmodium falciparum, but few factors have been shown to play a direct role. We adapted a CRISPR-based proteomics approach to identify novel factors associated with var genes in their natural chromatin context. Catalytically inactive Cas9 ("dCas9") was targeted to var gene regulatory elements, immunoprecipitated, and analyzed with mass spectrometry. Known and novel factors were enriched including structural proteins, DNA helicases, and chromatin remodelers. Functional characterization of PfISWI, an evolutionarily divergent putative chromatin remodeler enriched at the var gene promoter, revealed a role in transcriptional activation. Proteomics of PfISWI identified several proteins enriched at the var gene promoter such as acetyl-CoA synthetase, a putative MORC protein, and an ApiAP2 transcription factor. These findings validate the CRISPR/dCas9 proteomics method and define a new var gene-associated chromatin complex. This study establishes a tool for targeted chromatin purification of unaltered genomic loci and identifies novel chromatin-associated factors potentially involved in transcriptional control and/or chromatin organization of virulence genes in the human malaria parasite.


Assuntos
Adenosina Trifosfatases/metabolismo , Plasmodium falciparum/patogenicidade , Proteômica/métodos , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Sistemas CRISPR-Cas , Sequenciamento de Cromatina por Imunoprecipitação , Humanos , Íntrons , Espectrometria de Massas , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Fatores de Virulência/metabolismo
4.
Nat Microbiol ; 4(12): 2246-2259, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31384004

RESUMO

Malaria pathogenesis results from the asexual replication of Plasmodium falciparum within human red blood cells, which relies on a precisely timed cascade of gene expression over a 48-h life cycle. Although substantial post-transcriptional regulation of this hardwired program has been observed, it remains unclear how these processes are mediated on a transcriptome-wide level. To this end, we identified mRNA modifications in the P. falciparum transcriptome and performed a comprehensive characterization of N6-methyladenosine (m6A) over the course of blood-stage development. Using mass spectrometry and m6A RNA sequencing, we demonstrate that m6A is highly developmentally regulated, exceeding m6A levels known in any other eukaryote. We characterize a distinct m6A writer complex and show that knockdown of the putative m6A methyltransferase, PfMT-A70, by CRISPR interference leads to increased levels of transcripts that normally contain m6A. In accordance, we find an inverse correlation between m6A methylation and mRNA stability or translational efficiency. We further identify two putative m6A-binding YTH proteins that are likely to be involved in the regulation of these processes across the parasite's life cycle. Our data demonstrate unique features of an extensive m6A mRNA methylation programme in malaria parasites and reveal its crucial role in dynamically fine-tuning the transcriptional cascade of a unicellular eukaryote.


Assuntos
Adenosina/análogos & derivados , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Adenosina/metabolismo , Sistemas CRISPR-Cas , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes de Protozoários , Humanos , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Metilação , Metiltransferases/genética , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/genética
5.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29359192

RESUMO

The Malaria Box collection includes 400 chemically diverse small molecules with documented potency against malaria parasite growth, but the underlying modes of action are largely unknown. Using complementary phenotypic screens against Plasmodium falciparum and Toxoplasma gondii, we report phenotype-specific hits based on inhibition of overall parasite growth, apicoplast segregation, and egress or host invasion, providing hitherto unavailable insights into the possible mechanisms affected. First, the Malaria Box library was screened against tachyzoite stage T. gondii and the half-maximal effective concentrations (EC50s) of molecules showing ≥80% growth inhibition at 10 µM were determined. Comparison of the EC50s for T. gondii and P. falciparum identified a subset of 24 molecules with nanomolar potency against both parasites. Thirty molecules that failed to induce acute growth inhibition in T. gondii tachyzoites in a 2-day assay caused delayed parasite death upon extended exposure, with at least three molecules interfering with apicoplast segregation during daughter cell formation. Using flow cytometry and microscopy-based examinations, we prioritized 26 molecules with the potential to inhibit host cell egress/invasion during asexual developmental stages of P. falciparum. None of the inhibitors affected digestive vacuole integrity, ruling out a mechanism mediated by broadly specific protease inhibitor activity. Interestingly, five of the plasmodial egress inhibitors inhibited ionophore-induced egress of T. gondii tachyzoites. These findings highlight the advantage of comparative and targeted phenotypic screens in related species as a means to identify lead molecules with a conserved mode of action. Further work on target identification and mechanism analysis will facilitate the development of antiparasitic compounds with cross-species efficacy. IMPORTANCE The phylum Apicomplexa includes many human and animal pathogens, such as Plasmodium falciparum (human malaria) and Toxoplasma gondii (human and animal toxoplasmosis). Widespread resistance to current antimalarials and the lack of a commercial vaccine necessitate novel pharmacological interventions with distinct modes of action against malaria. For toxoplasmosis, new drugs to effectively eliminate tissue-dwelling latent cysts of the parasite are needed. The Malaria Box antimalarial collection, managed and distributed by the Medicines for Malaria Venture, includes molecules of novel chemical classes with proven antimalarial efficacy. Using targeted phenotypic assays of P. falciparum and T. gondii, we have identified a subset of the Malaria Box molecules as potent inhibitors of plastid segregation and parasite invasion and egress, thereby providing early insights into their probable mode of action. Five molecules that inhibit the egress of both parasites have been identified for further mechanistic studies. Thus, the approach we have used to identify novel molecules with defined modes of action in multiple parasites can expedite the development of pan-active antiparasitic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA