Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
iScience ; 26(5): 106525, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250326

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor central in the regulation of key cellular processes including cell metabolism, tissue differentiation, and regulation of the immune system. PPARγ is required for normal differentiation of the urothelium and is thought to be an essential driver of the luminal subtype of bladder cancer. However, the molecular components that regulate PPARG gene expression in bladder cancer remain unclear. Here, we developed an endogenous PPARG reporter system in luminal bladder cancer cells and performed genome-wide CRISPR knockout screening to identify bona fide regulators of PPARG gene expression. Functional validation of the dataset confirmed GATA3, SPT6, and the cohesin complex components SMC1A, and RAD21, as permissive upstream positive regulators of PPARG gene expression in luminal bladder cancer. In summary, this work provides a resource and biological insights to aid our understanding of PPARG regulation in bladder cancer.

2.
Respir Res ; 24(1): 124, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143066

RESUMO

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Humanos , Disbiose/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Perfilação da Expressão Gênica , Epitélio , Infecções por HIV/epidemiologia , Infecções por HIV/genética
3.
Cell Death Dis ; 12(11): 1012, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711805

RESUMO

Melanoma originates from melanin-producing cells called melanocytes. Melanoma poses a great risk because of its rapid ability to spread and invade new organs. Cellular metastasis involves alteration in the gene expression profile and their transformation from epithelial to mesenchymal state. Despite of several advances, metastatic melanoma being a key cause of therapy failure and mortality remains poorly understood. p32 has been found to be involved in various physiological and pathophysiological conditions. However, the role of p32 in melanoma progression and metastasis remains underexplored. Here, we identify the role of p32 in the malignancy of both murine and human melanoma. p32 knockdown leads to reduced cell proliferation, migration, and invasion in murine and human melanoma cells. Furthermore, p32 promotes in vitro tumorigenesis, inducing oncogenes and EMT markers. Mechanistically, we show p32 regulates tumorigenic and metastatic properties through the Akt/PKB signaling pathway in both murine and human melanoma. Furthermore, p32 silencing attenuates melanoma tumor progression and lung metastasis in vivo, modulating the tumor microenvironment by inhibiting the angiogenesis, infiltration of macrophages, and leukocytes in mice. Taken together, our findings identify that p32 drives melanoma progression, metastasis, and regulates the tumor microenvironment. p32 can be a target of a novel therapeutic approach in the regulation of melanoma progression and metastasis.


Assuntos
Proteínas de Transporte/efeitos adversos , Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Proteínas Mitocondriais/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Movimento Celular , Proliferação de Células , Progressão da Doença , Humanos , Melanoma/mortalidade , Melanoma/fisiopatologia , Camundongos , Metástase Neoplásica , Transdução de Sinais , Análise de Sobrevida , Transfecção , Microambiente Tumoral
4.
Cell Commun Signal ; 18(1): 170, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109194

RESUMO

BACKGROUND: Receptor for advanced glycation end products (RAGE) is a multi-ligand transmembrane receptor of the immunoglobulin superfamily. Lysophosphatidic acid (LPA) is a ligand for RAGE and is involved in physiological and pathophysiological conditions including cancer. However, RAGE-LPA axis is unexplored in lung and mammary cancer. METHODS: RAGE was silenced in A549, MDA MB-231 and MCF7 using RAGE shRNA. For in vitro tumorigenesis, we performed wound healing, colony formation, cell proliferation and invasion assays. Evaluation of expression of oncogenes, EMT markers and downstream signaling molecules was done by using western blot and immunohistochemistry. For subcellular expression of RAGE, immunofluorescence was done. In vivo tumorigenesis was assessed by intraperitoneal injection of cancer cells in nude mice. RESULTS: Here we show RAGE mediated profound increase in proliferation, migration and invasion of lung and mammary cancer cells via LPA in Protein kinase B (PKB) dependent manner. LPA mediated EMT transition is regulated by RAGE. In vivo xenograft results show significance of RAGE in LPA mediated lung and mammary tumor progression, angiogenesis and immune cell infiltration to tumor microenvironment. CONCLUSION: Our results establish the significance and involvement of RAGE in LPA mediated lung and mammary tumor progression and EMT transition via RAGE. RAGE-LPA axis may be a therapeutic target in lung and mammary cancer treatment strategies. Video Abstract.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias Pulmonares/patologia , Lisofosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Microambiente Tumoral , Animais , Neoplasias da Mama/imunologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Med Oncol ; 37(10): 88, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902730

RESUMO

Non-muscle myosin IIA heavy chain (MYH9) has been implicated in many physiological and pathological functions including cell adhesion, polarity, motility to cancer. However, its role in melanoma remains unexplored. The aim of our study was to evaluate the role of MYH9 in melanoma tumor development and metastasis and further to find out the potential underlying mechanisms. In this study, we evaluated the in vitro migratory and invasive properties and in vivo tumor development and metastasis in C57BL/6 mice by silencing MYH9 in B16F10 melanoma cells. Knocking down MYH9 enhanced migration and invasiveness of B16F10 cells in vitro. Furthermore, MYH9 silencing accelerated tumor growth and metastasis in melanoma subcutaneous and intravenous mouse models. Next, oncogenes analysis revealed epithelial-mesenchymal transition and Erk signaling pathway are being regulated with MYH9 expression. Finally, MYH9 silencing in B16F10 cells modulates the tumor microenvironment by manipulating the leukocytes and macrophages infiltration in tumors. These findings established the opposing role of MYH9 as a tumor suppressor in melanoma suggesting specific MYH9 based approaches in therapeutics.


Assuntos
Melanoma Experimental/patologia , Cadeias Pesadas de Miosina/metabolismo , Microambiente Tumoral/fisiologia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/patologia
6.
Biochimie ; 154: 55-61, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30076903

RESUMO

Receptor for Advanced Glycation End product (RAGE) is a multiligand receptor implicated in diverse pathological conditions such as diabetes, atherosclerosis, cancer and neural diseases. Extracellular, RAGE consists of V, C1 and C2 domains. Here, we show RAGE exists as a monomer in equilibrium with a fraction of a covalently linked dimer of monomers via its V domain through cysteine. In order to understand the functional implication of this dimer, we examined the binding capacity and functional potential of RAGE dimer via advanced glycation end products (AGEs) which shows enhanced binding capacity towards V domain, ERK phosphorylation, cytokine release and actin polymerization ability of the dimeric form for AGEs compared with the reduced monomeric form. Our data, suggests that the dimeric state of RAGE controls its function and ligand mediated signaling which may play important role in RAGE mediated various diseases.


Assuntos
Cisteína/metabolismo , Dissulfetos/metabolismo , Multimerização Proteica , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Células A549 , Animais , Cisteína/química , Cisteína/genética , Dissulfetos/química , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Camundongos , Domínios Proteicos , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/genética
7.
Respir Res ; 19(1): 140, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053882

RESUMO

BACKGROUND: Persons living with human immunodeficiency virus (PLWH) face an increased burden of chronic obstructive pulmonary disease (COPD). Repeated pulmonary infections, antibiotic exposures, and immunosuppression may contribute to an altered small airway epithelium (SAE) microbiome. METHODS: SAE cells were collected from 28 PLWH and 48 HIV- controls through bronchoscopic cytologic brushings. DNA extracted from SAE cells was subjected to 16S rRNA amplification and sequencing. Comparisons of alpha and beta diversity between HIV+ and HIV- groups were performed and key operational taxonomic units (OTUs) distinguishing the two groups were identified using the Boruta feature selection after Random Forest Analysis. RESULTS: PLWH demonstrated significantly reduced Shannon diversity compared with HIV- volunteers (1.82 ± 0.10 vs. 2.20 ± 0.073, p = 0.0024). This was primarily driven by a reduction in bacterial richness (23.29 ± 2.75 for PLWH and 46.04 ± 3.716 for HIV-, p < 0.0001). Phyla distribution was significantly altered among PLWH, with an increase in relative abundance of Proteobacteria (p = 0.0003) and a decrease in Bacteroidetes (p = 0.0068) and Firmicutes (p = 0.0002). Six discriminative OTUs were found to distinguish PLWH from HIV- volunteers, aligning to Veillonellaceae, Fusobacterium, Verrucomicrobiaceae, Prevotella, Veillonella, and Campylobacter. CONCLUSIONS: Compared to HIV- controls, PLWH's SAE microbiome is marked by reduced bacterial diversity and richness with significant differences in community composition.


Assuntos
Infecções por HIV/microbiologia , Microbiota/fisiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Mucosa Respiratória/microbiologia , Mucosa Respiratória/fisiologia , Idoso , Broncoscopia/métodos , Estudos de Coortes , Feminino , Infecções por HIV/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
8.
Sci Rep ; 7(1): 1376, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469141

RESUMO

Therapeutic development for spinal cord injury is hindered by the difficulty in conducting clinical trials, which to date have relied solely on functional outcome measures for patient enrollment, stratification, and evaluation. Biological biomarkers that accurately classify injury severity and predict neurologic outcome would represent a paradigm shift in the way spinal cord injury clinical trials could be conducted. MicroRNAs have emerged as attractive biomarker candidates due to their stability in biological fluids, their phylogenetic similarities, and their tissue specificity. Here we characterized a porcine model of spinal cord injury using a combined behavioural, histological, and molecular approach. We performed next-generation sequencing on microRNAs in serum samples collected before injury and then at 1, 3, and 5 days post injury. We identified 58, 21, 9, and 7 altered miRNA after severe, moderate, and mild spinal cord injury, and SHAM surgery, respectively. These data were combined with behavioural and histological analysis. Overall miRNA expression at 1 and 3 days post injury strongly correlates with outcome measures at 12 weeks post injury. The data presented here indicate that serum miRNAs are promising candidates as biomarkers for the evaluation of injury severity for spinal cord injury or other forms of traumatic, acute, neurologic injury.


Assuntos
MicroRNAs/sangue , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/diagnóstico , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Feminino , Curva ROC , Índice de Gravidade de Doença , Medula Espinal , Suínos
9.
Genome Res ; 27(4): 650-662, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28325850

RESUMO

Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures-including immune responses and therapeutic interventions-shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2-20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution.


Assuntos
Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/genética , Fibrose Cística/microbiologia , Fenótipo , Polimorfismo Genético , Adolescente , Animais , Biofilmes , Infecções por Burkholderia/complicações , Burkholderia cenocepacia/isolamento & purificação , Burkholderia cenocepacia/patogenicidade , Burkholderia cenocepacia/fisiologia , Criança , Pré-Escolar , Fibrose Cística/complicações , Genótipo , Humanos , Pulmão/microbiologia , Mariposas/microbiologia , Virulência , Adulto Jovem
10.
G3 (Bethesda) ; 7(4): 1251-1257, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28235825

RESUMO

Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker's yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug's binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo methotrexate-resistant strains. This sec21 allele (S96L) behaves as a recessive, gain-of-function allele, conferring methotrexate resistance that is abrogated by the presence of a wild-type copy of SEC21 These observations indicate that the Sec21p/COPI transport complex has previously uncharacterized roles in modulating methotrexate stress.


Assuntos
Farmacorresistência Fúngica/genética , Genoma Fúngico , Metotrexato/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Teste de Complementação Genética , Variação Genética , Mutação , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
11.
BMC Pulm Med ; 16(1): 142, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829448

RESUMO

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is an important comorbidity in patients living with human immunodeficiency virus (HIV). Previous bacterial microbiome studies have shown increased abundance of specific bacterium, like Tropheryma whipplei, and no overall community differences. However, the host response to the lung microbiome is unknown in patients infected with HIV. METHODS: Two bronchial brush samples were obtained from 21 HIV-infected patients. One brush was used for bacterial microbiome analysis using the Illumina MiSeqTM platform, while the other was used to evaluate gene expression patterns of the host using the Affymetrix Human Gene ST 2.0 array. Weighted gene co-expression network analysis was used to determine the relationship between the bacterial microbiome and host gene expression response. RESULTS: The Shannon Diversity was inversely related to only one gene expression module (p = 0.02); whereas evenness correlated with five different modules (p ≤ 0.05). After FDR correction only the Firmicutes phylum was significantly correlated with any modules (FDR < 0.05). These modules were enriched for cilia, transcription regulation, and immune response. Specific operational taxonomic units (OTUs), such as OTU4 (Pasteurellaceae), were able to distinguish HIV patients with and without COPD and severe emphysema. CONCLUSION: These data support the hypothesis that the bacterial microbiome in HIV lungs is associated with specific host immune responses. Whether or not these responses are also seen in non-HIV infected individuals needs to be addressed in future studies.


Assuntos
Infecções por HIV/complicações , Pulmão/microbiologia , Microbiota , Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto , Idoso , Bactérias/classificação , Células Epiteliais/citologia , Feminino , Expressão Gênica , Infecções por HIV/microbiologia , Humanos , Pulmão/citologia , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/imunologia , RNA Ribossômico 16S/genética , Tomografia Computadorizada por Raios X
12.
PLoS Genet ; 12(9): e1006275, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27588687

RESUMO

The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Tetra-Hidrofolato Desidrogenase/metabolismo , Alelos , Teorema de Bayes , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Metotrexato/uso terapêutico , Mutação , Neoplasias/genética , Tetra-Hidrofolato Desidrogenase/genética
13.
PLoS Pathog ; 12(4): e1005576, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27124727

RESUMO

Many bacterial species actively take up and recombine homologous DNA into their genomes, called natural competence, a trait that offers a means to identify the genetic basis of naturally occurring phenotypic variation. Here, we describe "transformed recombinant enrichment profiling" (TREP), in which natural transformation is used to generate complex pools of recombinants, phenotypic selection is used to enrich for specific recombinants, and deep sequencing is used to survey for the genetic variation responsible. We applied TREP to investigate the genetic architecture of intracellular invasion by the human pathogen Haemophilus influenzae, a trait implicated in persistence during chronic infection. TREP identified the HMW1 adhesin as a crucial factor. Natural transformation of the hmw1 operon from a clinical isolate (86-028NP) into a laboratory isolate that lacks it (Rd KW20) resulted in ~1,000-fold increased invasion into airway epithelial cells. When a distinct recipient (Hi375, already possessing hmw1 and its paralog hmw2) was transformed by the same donor, allelic replacement of hmw2AHi375 by hmw1A86-028NP resulted in a ~100-fold increased intracellular invasion rate. The specific role of hmw1A86-028NP was confirmed by mutant and western blot analyses. Bacterial self-aggregation and adherence to airway cells were also increased in recombinants, suggesting that the high invasiveness induced by hmw1A86-028NP might be a consequence of these phenotypes. However, immunofluorescence results found that intracellular hmw1A86-028NP bacteria likely invaded as groups, instead of as individual bacterial cells, indicating an emergent invasion-specific consequence of hmw1A-mediated self-aggregation.


Assuntos
Adesinas Bacterianas/genética , Perfilação da Expressão Gênica/métodos , Infecções por Haemophilus/microbiologia , Western Blotting , Células Epiteliais/microbiologia , Haemophilus influenzae/genética , Humanos , Espaço Intracelular/microbiologia , Microscopia de Fluorescência , Reação em Cadeia da Polimerase
14.
Nat Commun ; 6: 7671, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26220403

RESUMO

The proteins that coordinate complex adipogenic transcriptional networks are poorly understood. 14-3-3ζ is a molecular adaptor protein that regulates insulin signalling and transcription factor networks. Here we report that 14-3-3ζ-knockout mice are strikingly lean from birth with specific reductions in visceral fat depots. Conversely, transgenic 14-3-3ζ overexpression potentiates obesity, without exacerbating metabolic complications. Only the 14-3-3ζ isoform is essential for adipogenesis based on isoform-specific RNAi. Mechanistic studies show that 14-3-3ζ depletion promotes autophagy-dependent degradation of C/EBP-δ, preventing induction of the master adipogenic factors, Pparγ and C/EBP-α. Transcriptomic data indicate that 14-3-3ζ acts upstream of hedgehog signalling-dependent upregulation of Cdkn1b/p27(Kip1). Indeed, concomitant knockdown of p27(Kip1) or Gli3 rescues the early block in adipogenesis induced by 14-3-3ζ knockdown in vitro. Adipocyte precursors in 14-3-3ζKO embryos also appear to have greater Gli3 and p27(Kip1) abundance. Together, our in vivo and in vitro findings demonstrate that 14-3-3ζ is a critical upstream driver of adipogenesis.


Assuntos
Proteínas 14-3-3/genética , Adipogenia/genética , Gordura Intra-Abdominal/metabolismo , Obesidade/genética , Proteínas 14-3-3/metabolismo , Células 3T3-L1 , Animais , Autofagia/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Immunoblotting , Técnicas In Vitro , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Proteína Gli3 com Dedos de Zinco
15.
mBio ; 6(3): e00647, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26106079

RESUMO

UNLABELLED: Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. IMPORTANCE: Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Compostos de Benzil/isolamento & purificação , Compostos de Benzil/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Fungos/efeitos dos fármacos , Esfingolipídeos/biossíntese , Animais , Antifúngicos/efeitos adversos , Antifúngicos/toxicidade , Compostos de Benzil/efeitos adversos , Compostos de Benzil/toxicidade , Candidíase/tratamento farmacológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fungos/citologia , Fungos/metabolismo , Fungos/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Esfingolipídeos/antagonistas & inibidores , Resultado do Tratamento
16.
Med Microbiol Immunol ; 198(1): 57-67, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19050914

RESUMO

We sought to determine whether NMB1966, encoding a putative ABC transporter, has a role in pathogenesis. Compared to its isogenic wild-type parent strain Neisseria meningitidis MC58, the NMB1966 knockout mutant was less adhesive and invasive for human bronchial epithelial cells, had reduced survival in human blood and was attenuated in a systemic mouse model of infection. The transcriptome of the wild-type and the NMB1966 mutant was compared. The data are consistent with a previous functional assignment of NMB1966 being the ABC transporter component of a glutamate transporter operon. Forty-seven percent of all the differentially regulated genes encoded known outer membrane proteins or pathways generating complex surface structures such as adhesins, peptidoglycan and capsule. The data show that NMB1966 has a role in virulence and that remodelling of the outer membrane and surface/structures is associated with attenuation of the NMB1966 mutant.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Sangue/microbiologia , Células Epiteliais/microbiologia , Proteínas de Membrana Transportadoras/fisiologia , Viabilidade Microbiana , Neisseria meningitidis/patogenicidade , Fatores de Virulência/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/fisiologia , Animais , Aderência Bacteriana , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos , Neisseria meningitidis/genética , Virulência , Fatores de Virulência/genética
17.
Am J Respir Cell Mol Biol ; 29(4): 432-8, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14500254

RESUMO

Complement is necessary for defense against lung infection with Pseudomonas aeruginosa in mice. We studied in vitro interactions between complement and P. aeruginosa and in vivo effects of complement depletion to better understand this relationship. In vitro, P. aeruginosa strain UI-18 was resistant to killing by mouse serum. However, C3 opsonized the organism (via the alternative and mannose binding lectin [MBL] pathways), and C5 convertase activity on the bacterial surface was demonstrated. In vivo, compared with normal mice, complement-deficient mice experienced higher mortality and failed to sterilize their bronchoalveolar space within 24 h of inoculation. These changes did not seem to be a result of decreased inflammation because complement-deficient mice had normal neutrophil recruitment, greater lung myeloperoxidase content, and, by 24 h, a 35-fold higher level of the CXC chemokine KC. Lung static pressure-volume curves were abnormal in infected animals but were significantly more so in complement deficient mice. These data indicate that although P. aeruginosa is resistant to serum killing, C3 opsonization and C5 convertase assembly occur on its surface. This interaction in vivo plays a central role in host survival beyond just recruitment and activation of phagocytes and may serve to limit the inflammatory response to and tissue injury resulting from bacterial infection.


Assuntos
Quimiocinas CXC , Proteínas do Sistema Complemento/deficiência , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Quimiocina CXCL1 , Quimiocinas/imunologia , Fatores Quimiotáticos/imunologia , Quimiotaxia de Leucócito/imunologia , Complemento C3/imunologia , Complemento C3/metabolismo , Convertases de Complemento C3-C5/imunologia , Convertases de Complemento C3-C5/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mortalidade , Peroxidase/imunologia , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia Bacteriana/fisiopatologia , Infecções por Pseudomonas/fisiopatologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Fenômenos Fisiológicos Respiratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA