Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2808: 141-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743368

RESUMO

Measles virus (MeV) infection of airway surface epithelial cells provides a site for final amplification before being released back into the environment via coughing and sneezing. Multiple cell lines have served as models of polarized epithelia for MeV infection, such as Caco2 cells (intestinal derived human epithelia) or MDCK cells (kidney derived canine epithelia). In this chapter, we describe the materials and air-liquid interface (ALI) culture conditions for maintaining four different cell lines derived from human airway epithelial cells: 16HBE14o-, Calu-3, H358, and NuLi-1. We provide methods for confirming transepithelial electrical resistance (TER) and preparing samples for microscopy as well as expected results from apical or basolateral MeV delivery. Polarized human airway derived cells serve as tissue culture models for investigating targeted questions about how MeV exits a human host. In addition, these methods are generalizable to studies of other respiratory viruses or the biology of ALI airway epithelial cells.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais , Vírus do Sarampo , Humanos , Vírus do Sarampo/fisiologia , Células Epiteliais/virologia , Células Epiteliais/citologia , Técnicas de Cultura de Células/métodos , Sarampo/virologia , Linhagem Celular , Cães , Animais , Mucosa Respiratória/virologia , Mucosa Respiratória/citologia , Impedância Elétrica
2.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328187

RESUMO

A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.

3.
Front Genome Ed ; 5: 1271813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077224

RESUMO

Considerable effort has been devoted to developing adeno-associated virus (AAV)-based vectors for gene therapy in cystic fibrosis (CF). As a result of directed evolution and capsid shuffling technology, AAV capsids are available with widespread tropism for airway epithelial cells. For example, AAV2.5T and AAV6.2 are two evolved capsids with improved airway epithelial cell transduction properties over their parental serotypes. However, limited research has been focused on identifying their specific cellular tropism. Restoring cystic fibrosis transmembrane conductance regulator (CFTR) expression in surface columnar epithelial cells is necessary for the correction of the CF airway phenotype. Basal cells are a progenitor population of the conducting airways responsible for replenishing surface epithelial cells (including secretory cells and ionocytes), making correction of this cell population vital for a long-lived gene therapy strategy. In this study, we investigate the tropism of AAV capsids for three cell types in primary cultures of well-differentiated human airway epithelial (HAE) cells and primary human airway basal cells. We observed that AAV2.5T transduced surface epithelial cells better than AAV6.2, while AAV6.2 transduced airway basal cells better than AAV2.5T. We also investigated a recently developed capsid, AAV6.2FF, which has two surface tyrosines converted to phenylalanines. Next, we incorporated reciprocal mutations to create AAV capsids with further improved surface and basal cell transduction characteristics. Lastly, we successfully employed a split-intein approach using AAV to deliver an adenine base editor (ABE) to repair the CFTR R553X mutation. Our results suggest that rational incorporation of AAV capsid mutations improves AAV transduction of the airway surface and progenitor cells and may ultimately lead to improved pulmonary function in people with CF.

4.
J Virol ; 97(10): e0105123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732787

RESUMO

IMPORTANCE: For many years, measles virus (MeV) was assumed to first enter the host via the apical surface of airway epithelial cells and subsequently spread systemically. We and others reported that MeV has an overwhelming preference for entry at the basolateral surface of airway epithelial cells, which led to a fundamental new understanding of how MeV enters a human host. This unexpected observation using well-differentiated primary cultures of airway epithelia from human donors contradicted previous studies using immortalized cultured cells. Here, we show that appropriate differentiation and cell morphology of primary human airway epithelial cells are critical to recapitulate MeV infection patterns and pathogenesis of the in vivo airways. By simply culturing primary cells in media containing serum or passaging primary cultures, erroneous results quickly emerge. These results have broad implications for data interpretation related to respiratory virus infection, spread, and release from human airway epithelial cells.


Assuntos
Células Cultivadas , Células Epiteliais , Vírus do Sarampo , Sarampo , Sistema Respiratório , Humanos , Células Epiteliais/virologia , Epitélio , Sarampo/virologia , Sistema Respiratório/citologia
5.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37581935

RESUMO

The volume and composition of a thin layer of liquid covering the airway surface defend the lung from inhaled pathogens and debris. Airway epithelia secrete Cl- into the airway surface liquid through cystic fibrosis transmembrane conductance regulator (CFTR) channels, thereby increasing the volume of airway surface liquid. The discovery that pulmonary ionocytes contain high levels of CFTR led us to predict that ionocytes drive secretion. However, we found the opposite. Elevating ionocyte abundance increased liquid absorption, whereas reducing ionocyte abundance increased secretion. In contrast to other airway epithelial cells, ionocytes contained barttin/Cl- channels in their basolateral membrane. Disrupting barttin/Cl- channel function impaired liquid absorption, and overexpressing barttin/Cl- channels increased absorption. Together, apical CFTR and basolateral barttin/Cl- channels provide an electrically conductive pathway for Cl- flow through ionocytes, and the transepithelial voltage generated by apical Na+ channels drives absorption. These findings indicate that ionocytes mediate liquid absorption, and secretory cells mediate liquid secretion. Segregating these counteracting activities to distinct cell types enables epithelia to precisely control the airway surface. Moreover, the divergent role of CFTR in ionocytes and secretory cells suggests that cystic fibrosis disrupts both liquid secretion and absorption.


Assuntos
Canais de Cloreto , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Pulmão/metabolismo
6.
Am J Respir Cell Mol Biol ; 67(4): 491-502, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35849656

RESUMO

In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.


Assuntos
Fibrose Cística , Alanina , Bumetanida , Humanos , Concentração de Íons de Hidrogênio , Prolina , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
7.
Nucleic Acids Res ; 49(18): 10558-10572, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520545

RESUMO

Mutations in the CFTR gene that lead to premature stop codons or splicing defects cause cystic fibrosis (CF) and are not amenable to treatment by small-molecule modulators. Here, we investigate the use of adenine base editor (ABE) ribonucleoproteins (RNPs) that convert A•T to G•C base pairs as a therapeutic strategy for three CF-causing mutations. Using ABE RNPs, we corrected in human airway epithelial cells premature stop codon mutations (R553X and W1282X) and a splice-site mutation (3849 + 10 kb C > T). Following ABE delivery, DNA sequencing revealed correction of these pathogenic mutations at efficiencies that reached 38-82% with minimal bystander edits or indels. This range of editing was sufficient to attain functional correction of CFTR-dependent anion channel activity in primary epithelial cells from CF patients and in a CF patient-derived cell line. These results demonstrate the utility of base editor RNPs to repair CFTR mutations that are not currently treatable with approved therapeutics.


Assuntos
Adenina , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Edição de Genes , Mucosa Respiratória/metabolismo , Linhagem Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação , Ribonucleoproteínas
8.
Mol Ther Nucleic Acids ; 25: 293-301, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34458011

RESUMO

Life-long expression of a gene therapy agent likely requires targeting stem cells. Here we ask the question: does viral vector transduction or ectopic expression of a therapeutic transgene preclude airway stem cell function? We used a lentiviral vector containing a GFP or cystic fibrosis transmembrane conductance regulator (CFTR) transgene to transduce primary airway basal cells from human cystic fibrosis (CF) or non-CF lung donors and monitored expression and function after differentiation. Ussing chamber measurements confirmed CFTR-dependent chloride channel activity in CF donor cells. Immunostaining, quantitative real-time PCR, and single-cell sequencing analysis of cell-type markers indicated that vector transduction or CFTR expression does not alter the formation of pseudostratified, fully differentiated epithelial cell cultures or cell type distribution. These results have important implications for use of gene addition or gene editing strategies as life-long curative approaches for lung genetic diseases.

9.
PLoS Pathog ; 17(8): e1009458, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383863

RESUMO

Measles virus (MeV) is the most contagious human virus. Unlike most respiratory viruses, MeV does not directly infect epithelial cells upon entry in a new host. MeV traverses the epithelium within immune cells that carry it to lymphatic organs where amplification occurs. Infected immune cells then synchronously deliver large amounts of virus to the airways. However, our understanding of MeV replication in airway epithelia is limited. To model it, we use well-differentiated primary cultures of human airway epithelial cells (HAE) from lung donors. In HAE, MeV spreads directly cell-to-cell forming infectious centers that grow for ~3-5 days, are stable for a few days, and then disappear. Transepithelial electrical resistance remains intact during the entire course of HAE infection, thus we hypothesized that MeV infectious centers may dislodge while epithelial function is preserved. After documenting by confocal microscopy that infectious centers progressively detach from HAE, we recovered apical washes and separated cell-associated from cell-free virus by centrifugation. Virus titers were about 10 times higher in the cell-associated fraction than in the supernatant. In dislodged infectious centers, ciliary beating persisted, and apoptotic markers were not readily detected, suggesting that they retain functional metabolism. Cell-associated MeV infected primary human monocyte-derived macrophages, which models the first stage of infection in a new host. Single-cell RNA sequencing identified wound healing, cell growth, and cell differentiation as biological processes relevant for infectious center dislodging. 5-ethynyl-2'-deoxyuridine (EdU) staining located proliferating cells underneath infectious centers. Thus, cells located below infectious centers divide and differentiate to repair the dislodged infected epithelial patch. As an extension of these studies, we postulate that expulsion of infectious centers through coughing and sneezing could contribute to MeV's strikingly high reproductive number by allowing the virus to survive longer in the environment and by delivering a high infectious dose to the next host.


Assuntos
Células Epiteliais/virologia , Macrófagos/virologia , Vírus do Sarampo/patogenicidade , Sarampo/virologia , Sistema Respiratório/virologia , Internalização do Vírus , Replicação Viral , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Macrófagos/metabolismo , Sarampo/genética , Sarampo/metabolismo , RNA-Seq , Sistema Respiratório/metabolismo , Análise de Célula Única , Transcriptoma
10.
Mol Ther Methods Clin Dev ; 21: 94-106, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33768133

RESUMO

Despite significant advances in cystic fibrosis (CF) treatments, a one-time treatment for this life-shortening disease remains elusive. Stable complementation of the disease-causing mutation with a normal copy of the CF transmembrane conductance regulator (CFTR) gene fulfills that goal. Integrating lentiviral vectors are well suited for this purpose, but widespread airway transduction in humans is limited by achievable titers and delivery barriers. Since airway epithelial cells are interconnected through gap junctions, small numbers of cells expressing supraphysiologic levels of CFTR could support sufficient channel function to rescue CF phenotypes. Here, we investigated promoter choice and CFTR codon optimization (coCFTR) as strategies to regulate CFTR expression. We evaluated two promoters-phosphoglycerate kinase (PGK) and elongation factor 1-α (EF1α)-that have been safely used in clinical trials. We also compared the wild-type human CFTR sequence to three alternative coCFTR sequences generated by different algorithms. With the use of the CFTR-mediated anion current in primary human CF airway epithelia to quantify channel expression and function, we determined that EF1α produced greater currents than PGK and identified a coCFTR sequence that conferred significantly increased functional CFTR expression. Optimized promoter and CFTR sequences advance lentiviral vectors toward CF gene therapy clinical trials.

11.
Front Genome Ed ; 3: 785829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35098209

RESUMO

Pulmonary surfactant is critically important to prevent atelectasis by lowering the surface tension of the alveolar lining liquid. While respiratory distress syndrome (RDS) is common in premature infants, severe RDS in term and late preterm infants suggests an underlying genetic etiology. Pathogenic variants in the genes encoding key components of pulmonary surfactant including surfactant protein B (SP-B, SFTPB gene), surfactant protein C (SP-C, SFTPC gene), and the ATP-Binding Cassette transporter A3 (ABCA3, ABCA3 gene) result in severe neonatal RDS or childhood interstitial lung disease (chILD). These proteins play essential roles in pulmonary surfactant biogenesis and are expressed in alveolar epithelial type II cells (AEC2), the progenitor cell of the alveolar epithelium. SP-B deficiency most commonly presents in the neonatal period with severe RDS and requires lung transplantation for survival. SFTPC mutations act in an autosomal dominant fashion and more commonly presents with chILD or idiopathic pulmonary fibrosis than neonatal RDS. ABCA3 deficiency often presents as neonatal RDS or chILD. Gene therapy is a promising option to treat monogenic lung diseases. Successes and challenges in developing gene therapies for genetic disorders of surfactant dysfunction include viral vector design and tropism for target cell types. In this review, we explore adeno-associated virus (AAV), lentiviral, and adenoviral (Ad)-based vectors as delivery vehicles. Both gene addition and gene editing strategies are compared to best design treatments for lung diseases resulting from pathogenic variants in the SFTPB, SFTPC, and ABCA3 genes.

12.
Mol Ther Methods Clin Dev ; 18: 98-118, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32995354

RESUMO

Different approaches are used in the production of recombinant adeno-associated virus (rAAV). The two leading approaches are transiently transfected human HEK293 cells and live baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. Unexplained differences in vector performance have been seen clinically and preclinically. Thus, we performed a controlled comparative production analysis varying only the host cell species but maintaining all other parameters. We characterized differences with multiple analytical approaches: proteomic profiling by mass spectrometry, isoelectric focusing, cryo-EM (transmission electron cryomicroscopy), denaturation assays, genomic and epigenomic sequencing of packaged genomes, human cytokine profiling, and functional transduction assessments in vitro and in vivo, including in humanized liver mice. Using these approaches, we have made two major discoveries: (1) rAAV capsids have post-translational modifications (PTMs), including glycosylation, acetylation, phosphorylation, and methylation, and these differ between platforms; and (2) rAAV genomes are methylated during production, and these are also differentially deposited between platforms. Our data show that host cell protein impurities differ between platforms and can have their own PTMs, including potentially immunogenic N-linked glycans. Human-produced rAAVs are more potent than baculovirus-Sf9 vectors in various cell types in vitro (p < 0.05-0.0001), in various mouse tissues in vivo (p < 0.03-0.0001), and in human liver in vivo (p < 0.005). These differences may have clinical implications for rAAV receptor binding, trafficking, expression kinetics, expression durability, vector immunogenicity, as well as cost considerations.

13.
Hum Gene Ther ; 31(17-18): 985-995, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32718227

RESUMO

The list of successful gene therapy trials using adeno-associated virus (AAV)-based vectors continues to grow and includes a wide range of monogenic diseases. Replication incompetent AAV genomes typically remain episomal and expression dilutes as cells divide and die. Consequently, long-term transgene expression from AAV is best suited for quiescent cell types, such as retinal cells, myocytes, or neurons. For genetic diseases that involve cells with steady turnover, AAV-conferred correction may require routine readministration, where every dose carries the risk of developing an adaptive immune response that renders treatment ineffective. Here, we discuss innovative approaches to permanently modify the host genome using AAV-based platforms, thus potentially requiring only a single dose. Such approaches include using AAV delivery of DNA transposons, homologous recombination templates into safe harbors, and nucleases for targeting integration. In tissues with continual cell turnover, genetic modification of progenitor cell populations will help ensure persistent therapeutic outcomes. Combining the safety profile of AAV-based gene therapy vectors with the ability to integrate a therapeutic transgene creates novel solutions to the challenge of lifelong curative treatments for human genetic diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Fibrose Cística/genética , Vetores Genéticos/genética , Humanos
14.
Genes (Basel) ; 11(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224868

RESUMO

Extracellular vesicles (EVs) are a class of naturally occurring secreted cellular bodies that are involved in long distance cell-to-cell communication. Proteins, lipids, mRNA, and miRNA can be packaged into these vesicles and released from the cell. This information is then delivered to target cells. Since EVs are naturally adapted molecular messengers, they have emerged as an innovative, inexpensive, and robust method to deliver therapeutic cargo in vitro and in vivo. Well-differentiated primary cultures of human airway epithelial cells (HAE) are refractory to standard transfection techniques. Indeed, common strategies used to overexpress or knockdown gene expression in immortalized cell lines simply have no detectable effect in HAE. Here we use EVs to efficiently deliver siRNA or protein to HAE. Furthermore, EVs can deliver CFTR protein to cystic fibrosis donor cells and functionally correct the Cl- channel defect in vitro. EV-mediated delivery of siRNA or proteins to HAE provides a powerful genetic tool in a model system that closely recapitulates the in vivo airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/administração & dosagem , Células Epiteliais/metabolismo , Vesículas Extracelulares/química , Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , Sistema Respiratório/metabolismo , Transporte Biológico , Comunicação Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Teste de Complementação Genética , Humanos , Ativação do Canal Iônico , RNA Interferente Pequeno/genética , Sistema Respiratório/citologia
15.
mBio ; 10(6)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772054

RESUMO

Measles virus (MeV) is a highly contagious human pathogen that continues to be a worldwide health burden. One of the challenges for the study of MeV spread is the identification of model systems that accurately reflect how MeV behaves in humans. For our studies, we use unpassaged, well-differentiated primary cultures of airway epithelial cells from human donor lungs to examine MeV infection and spread. Here, we show that the main components of the MeV ribonucleoprotein complex (RNP), the nucleocapsid and phosphoprotein, colocalize with the apical and circumapical F-actin networks. To better understand how MeV infections spread across the airway epithelium, we generated a recombinant virus incorporating chimeric fluorescent proteins in its RNP complex. By live cell imaging, we observed rapid movement of RNPs along the circumapical F-actin rings of newly infected cells. This strikingly rapid mechanism of horizontal trafficking across epithelia is consistent with the opening of pores between columnar cells by the viral membrane fusion apparatus. Our work provides mechanistic insights into how MeV rapidly spreads through airway epithelial cells, contributing to its extremely contagious nature.IMPORTANCE The ability of viral particles to directly spread cell to cell within the airways without particle release is considered to be highly advantageous to many respiratory viruses. Our previous studies in well-differentiated, primary human airway epithelial cells suggest that measles virus (MeV) spreads cell to cell by eliciting the formation of intercellular membrane pores. Based on a newly generated ribonucleoprotein complex (RNP) "tracker" virus, we document by live-cell microscopy that MeV RNPs move along F-actin rings before entering a new cell. Thus, rather than diffusing through the cytoplasm of a newly infected columnar cell, RNPs take advantage of the cytoskeletal infrastructure to rapidly spread laterally across the human airway epithelium. This results in rapid horizontal spread through the epithelium that does not require particle release.


Assuntos
Actinas/metabolismo , Células Epiteliais/virologia , Vírus do Sarampo/metabolismo , Sarampo/virologia , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Pulmão/virologia , Sarampo/metabolismo , Vírus do Sarampo/genética , Ribonucleoproteínas/genética , Proteínas Virais/genética
16.
Mol Ther Methods Clin Dev ; 14: 228-236, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31417941

RESUMO

Adenoviruses are efficient vehicles for transducing airway epithelial cells. Human adenoviruses (Ads) are classified into seven species termed A-G. Most species use the coxsackie-adenovirus receptor (CAR) as a primary cellular receptor. Ad group B is notable because it is further divided into groups B1 and B2 and its members use CD46 or desmoglein 2 (DSG2) as cellular receptors. To date, human Ad types 2 and 5 have been the predominant choices for preclinical and clinical trials using Ad-based viral vectors in the airways. In this study, we screened 14 Ad types representing species C, B1, B2, D, and E. Using well-differentiated primary cultures of human airway epithelial cells (HAEs), we examined transduction efficiency. Based on GFP or nanoluciferase expression, multiple Ad types transduced HAEs as well as or better than Ad5. Ad3, Ad21, and Ad14 belong to species B and had notable transduction properties. We further examined the transduction properties of conditionally reprogrammed airway basal cells and primary basal cells from human lung donors. Again, the transduction efficiency of species B members outperformed the other types. These data suggest that adenoviral vectors based on species B transduce fully differentiated epithelial cells and progenitor cells in the human airways better than Ad5.

17.
Am J Respir Cell Mol Biol ; 61(6): 747-754, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31184507

RESUMO

Cystic fibrosis is an autosomal-recessive disease that is caused by a mutant CFTR (cystic fibrosis transmembrane conductance regulator) gene and is characterized by chronic bacterial lung infections and inflammation. Complementation with functional CFTR normalizes anion transport across the airway surface. Adeno-associated virus (AAV) is a useful vector for gene therapy because of its low immunogenicity and ability to persist for months to years. However, because its episomal expression may decrease after cell division, readministration of the AAV vector may be required. To overcome this, we designed an integrating AAV-based CFTR-expressing vector, termed piggyBac (PB)/AAV, carrying CFTR flanked by the terminal repeats of the piggyBac transposon. With codelivery of the piggyBac transposase, PB/AAV can integrate into the host genome. Because of the packaging constraints of AAV, careful consideration was required to ensure that the vector would package and express its CFTR cDNA cargo. In this short-term study, PB/AAV-CFTR was aerosolized to the airways of CF pigs in the absence of the transposase. Two weeks later, transepithelial Cl- current was restored in freshly excised tracheal and bronchial tissue. Additionally, we observed an increase in tracheal airway surface liquid pH and bacterial killing in comparison with untreated CF pigs. Airway surface liquid from primary airway cells cultured from treated CF pigs exhibited increased pH correlating with decreased viscosity. Together, these results show that complementing CFTR in CF pigs with PB/AAV rescues the anion transport defect in a large-animal CF model. Delivery of this integrating viral vector system to airway progenitor cells could lead to persistent, life-long expression in vivo.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Fibrose Cística/terapia , Dependovirus/genética , Terapia Genética , Vetores Genéticos/uso terapêutico , Animais , Animais Recém-Nascidos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Genes Sintéticos , Humanos , Regiões Promotoras Genéticas , Staphylococcus aureus , Suínos , Traqueia/metabolismo , Traqueia/microbiologia , Integração Viral
18.
Genes (Basel) ; 9(11)2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405068

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a cAMP-regulated anion channel. Although CF is a multi-organ system disease, most people with CF die of progressive lung disease that begins early in childhood and is characterized by chronic bacterial infection and inflammation. Nearly 90% of people with CF have at least one copy of the ΔF508 mutation, but there are hundreds of CFTR mutations that result in a range of disease severities. A CFTR gene replacement approach would be efficacious regardless of the disease-causing mutation. After the discovery of the CFTR gene in 1989, the in vitro proof-of-concept for gene therapy for CF was quickly established in 1990. In 1993, the first of many gene therapy clinical trials attempted to rescue the CF defect in airway epithelia. Despite the initial enthusiasm, there is still no FDA-approved gene therapy for CF. Here we discuss the history of CF gene therapy, from the discovery of the CFTR gene to current state-of-the-art gene delivery vector designs. While implementation of CF gene therapy has proven more challenging than initially envisioned; thanks to continued innovation, it may yet become a reality.

19.
Nucleic Acids Res ; 46(18): 9591-9600, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165523

RESUMO

Cystic fibrosis (CF) is a common genetic disease caused by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR). Although CF affects multiple organ systems, chronic bacterial infections and inflammation in the lung are the leading causes of morbidity and mortality in people with CF. Complementation with a functional CFTR gene repairs this defect, regardless of the disease-causing mutation. In this study, we used a gene delivery system termed piggyBac/adenovirus (Ad), which combines the delivery efficiency of an adenoviral-based vector with the persistent expression of a DNA transposon-based vector. We aerosolized piggyBac/Ad to the airways of pigs and observed widespread pulmonary distribution of vector. We quantified the regional distribution in the airways and observed transduction of large and small airway epithelial cells of non-CF pigs, with ∼30-50% of surface epithelial cells positive for GFP. We transduced multiple cell types including ciliated, non-ciliated, basal, and submucosal gland cells. In addition, we phenotypically corrected CF pigs following delivery of piggyBac/Ad expressing CFTR as measured by anion channel activity, airway surface liquid pH, and bacterial killing ability. Combining an integrating DNA transposon with adenoviral vector delivery is an efficient method for achieving functional CFTR correction from a single vector administration.


Assuntos
Adenoviridae/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Elementos de DNA Transponíveis/genética , Terapia Genética/métodos , Pulmão/metabolismo , Aerossóis/administração & dosagem , Aerossóis/farmacocinética , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/farmacocinética , Fenótipo , Mucosa Respiratória/metabolismo , Suínos , Distribuição Tecidual , Resultado do Tratamento
20.
Methods Mol Biol ; 1628: 65-78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573611

RESUMO

Pseudotyping lentivirus-based vectors is a strategy used to study conferred vector tropism and mechanisms of envelope glycoprotein function. Lentiviruses and filoviruses both assemble at the plasma membrane and have homotrimeric structural envelope glycoproteins that mediate both receptor binding and fusion. Such similarities help foster efficient pseudotyping. Importantly, filovirus glycoprotein pseudotyping of lentiviral vectors allows investigators to study virus entry at substantially less restrictive levels of biosafety containment than that required for wild-type filovirus work (biosafety level-2 vs. biosafety level-4, respectively). Standard lentiviral vector production involves transient transfection of viral component expression plasmids into producer cells, supernatant collection, and centrifuge concentration. Because the envelope glycoprotein expression plasmid is provided in trans, wild type or variant filoviral glycoproteins from marburgvirus or ebolavirus species may be used for pseudotyping and compared side-by-side. In this chapter we discuss the manufacture of pseudotyped lentiviral vector with an emphasis on small-scale laboratory grade production.


Assuntos
Vetores Genéticos , Lentivirus/genética , Tropismo Viral/genética , Animais , Terapia Genética , Humanos , Glicoproteínas de Membrana/genética , Plasmídeos/genética , Transfecção , Proteínas do Envelope Viral/genética , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA