Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873375

RESUMO

Accurate detection of somatic mutations in single tumor cells is greatly desired as it allows us to quantify the single-cell mutation burden and construct the mutation-based phylogenetic tree. Here we developed scNanoSeq chemistry and profiled 842 single cells from 21 human breast cancer samples. The majority of the mutation-based phylogenetic trees comprise a characteristic stem evolution followed by the clonal sweep. We observed the subtype-dependent lengths in the stem evolution. To explain this phenomenon, we propose that the differences are related to different reprogramming required for different subtypes of breast cancer. Furthermore, we reason that the time that the tumor-initiating cell took to acquire the critical clonal-sweep-initiating mutation by random chance set the time limit for the reprogramming process. We refer to this model as a reprogramming and critical mutation co-timing (RCMC) subtype model. Next, in the sweeping clone, we observed that tumor cells undergo a branched evolution with rapidly decreasing selection. In the most recent clades, effectively neutral evolution has been reached, resulting in a substantially large number of mutational heterogeneities. Integrative analysis with 522-713X ultra-deep bulk whole genome sequencing (WGS) further validated this evolution mode. Mutation-based phylogenetic trees also allow us to identify the early branched cells in a few samples, whose phylogenetic trees support the gradual evolution of copy number variations (CNVs). Overall, the development of scNanoSeq allows us to unveil novel insights into breast cancer evolution.

2.
Front Immunol ; 12: 659625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912187

RESUMO

Aberrant T-cell function is implicated in the pathogenesis of myelodysplastic syndrome (MDS). Monitoring the T-cell receptor (TCR) repertoire can provide insights into T-cell adaptive immunity. Previous studies found skewed TCR repertoires in MDS compared to healthy patients; however these studies that leverage mRNA-based spectratyping have limitations. Furthermore, evaluating the TCR repertoire in context of hypomethylating agents (HMAs) treatment can provide insights into the dynamics of T-cell mediated responses in MDS. We conducted immunosequencing of the CDR3 regions of TCRß chains in bone marrows of 11 MDS patients prior to treatment (n=11 bone marrows prior to treatment), and in at least 2 timepoints for each patient following treatment (n=26 bone marrow aspirates post-treatment) with (HMA), alongside analyzing bone marrows from 4 healthy donors as controls. TCR repertoires in MDS patients were more clonal and less diverse than healthy donors. However, unlike previous reports, we did not observe significant skewness in CDR3 length or spectratyping. The global metrics of TCR profiling including richness, clonality, overlaps were not significantly changed in responders or non-responders following treatment with HMAs. However, we found an emergence of novel clonotypes in MDS patients who responded to treatment, while non-responders had a higher frequency of contracted clonotypes following treatment. By applying GLIPH2 for antigen prediction, we found rare TCR specificity clusters shared by TCR clonotypes from different patients at pre- or following treatment. Our data show clear differences in TCR repertoires of MDS compared with healthy patients and that novel TCR clonotype emergence in response to HMA therapy was correlated with response. This suggests that response to HMA therapy may be partially driven by T-cell mediated immunity and that the immune-based therapies, which target the adaptive immune system, may play a significant role in select patients with MDS.


Assuntos
Azacitidina/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Decitabina/uso terapêutico , Síndromes Mielodisplásicas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Idoso , Idoso de 80 Anos ou mais , Células Clonais/efeitos dos fármacos , Células Clonais/imunologia , Células Clonais/metabolismo , Estudos de Coortes , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/imunologia , Reação em Cadeia da Polimerase/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Análise de Sequência de DNA/métodos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento
3.
Nat Med ; 25(3): 439-447, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692697

RESUMO

Current non-invasive prenatal screening is targeted toward the detection of chromosomal abnormalities in the fetus1,2. However, screening for many dominant monogenic disorders associated with de novo mutations is not available, despite their relatively high incidence3. Here we report on the development and validation of, and early clinical experience with, a new approach for non-invasive prenatal sequencing for a panel of causative genes for frequent dominant monogenic diseases. Cell-free DNA (cfDNA) extracted from maternal plasma was barcoded, enriched, and then analyzed by next-generation sequencing (NGS) for targeted regions. Low-level fetal variants were identified by a statistical analysis adjusted for NGS read count and fetal fraction. Pathogenic or likely pathogenic variants were confirmed by a secondary amplicon-based test on cfDNA. Clinical tests were performed on 422 pregnancies with or without abnormal ultrasound findings or family history. Follow-up studies on cases with available outcome results confirmed 20 true-positive, 127 true-negative, zero false-positive, and zero-false negative results. The initial clinical study demonstrated that this non-invasive test can provide valuable molecular information for the detection of a wide spectrum of dominant monogenic diseases, complementing current screening for aneuploidies or carrier screening for recessive disorders.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Acondroplasia/diagnóstico , Acondroplasia/genética , Acrocefalossindactilia/diagnóstico , Acrocefalossindactilia/genética , Adulto , Osso e Ossos/anormalidades , Ácidos Nucleicos Livres , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Feminino , Doenças Genéticas Inatas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidropisia Fetal/diagnóstico por imagem , Hidropisia Fetal/genética , Linfangioma Cístico/diagnóstico por imagem , Linfangioma Cístico/genética , Medição da Translucência Nucal , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/genética , Valor Preditivo dos Testes , Gravidez , Diagnóstico Pré-Natal , Análise de Sequência de DNA , Displasia Tanatofórica/diagnóstico , Displasia Tanatofórica/genética , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA