Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36976241

RESUMO

Purinergic P2X7 receptors (P2X7) have now been proven to play an important role and represent an important therapeutic target in many pathological conditions including neurodegeneration. Here, we investigated the impact of peptides on purinergic signaling in Neuro-2a cells through the P2X7 subtype in in vitro models. We have found that a number of recombinant peptides, analogs of sea anemone Kunitz-type peptides, are able to influence the action of high concentrations of ATP and thereby reduce the toxic effects of ATP. The influx of calcium, as well as the fluorescent dye YO-PRO-1, was significantly suppressed by the studied peptides. Immunofluorescence experiments confirmed that the peptides reduce the P2X7 expression level in neuronal Neuro-2a cells. Two selected active peptides, HCRG1 and HCGS1.10, were found to specifically interact with the extracellular domain of P2X7 and formed stable complexes with the receptor in surface plasmon resonance experiments. The molecular docking approach allowed us to establish the putative binding sites of the most active HCRG1 peptide on the extracellular domain of the P2X7 homotrimer and propose a mechanism for regulating its function. Thus, our work demonstrates the ability of the Kunitz-type peptides to prevent neuronal death by affecting signaling through the P2X7 receptor.


Assuntos
Receptores Purinérgicos P2X7 , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/química , Trifosfato de Adenosina/metabolismo
2.
Toxins (Basel) ; 14(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36287966

RESUMO

The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels, provide cholinergic signaling, and are modulated by various venom toxins and drugs in addition to neurotransmitters. Here, four APETx-like toxins, including two new toxins, named Hmg 1b-2 Metox and Hmg 1b-5, were isolated from the sea anemone Heteractis magnifica and characterized as novel nAChR ligands and acid-sensing ion channel (ASIC) modulators. All peptides competed with radiolabeled α-bungarotoxin for binding to Torpedo californica muscle-type and human α7 nAChRs. Hmg 1b-2 potentiated acetylcholine-elicited current in human α7 receptors expressed in Xenopus laevis oocytes. Moreover, the multigene family coding APETx-like peptides library from H. magnifica was described and in silico surface electrostatic potentials of novel peptides were analyzed. To explain the 100% identity of some peptide isoforms between H. magnifica and H. crispa, 18S rRNA, COI, and ITS analysis were performed. It has been shown that the sea anemones previously identified by morphology as H. crispa belong to the species H. magnifica.


Assuntos
Receptores Nicotínicos , Anêmonas-do-Mar , Toxinas Biológicas , Animais , Humanos , Anêmonas-do-Mar/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Bungarotoxinas , Canais Iônicos Sensíveis a Ácido , Acetilcolina/metabolismo , Ligantes , RNA Ribossômico 18S/metabolismo , Toxinas Biológicas/metabolismo , Peptídeos/química , Colinérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA