Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39199240

RESUMO

DailyColors™ is a supplement made up of several phytonutrients that aims to replicate elements from the Mediterranean diet. These include fruit, berry and vegetable extracts that are rich in key phytochemicals such as Quercetin, Catechins, Phloretin, Ellagic Acid, and Anthocyanins. Here, we determined the effects of DailyColors™ on the blood biomarkers associated with the diverse mechanisms implicated in ageing and age-related diseases, including mitochondrial function, inflammation, and oxidative stress, as well as on saliva's DNA methylation pattern. Thirty adult participants (mean (SD) age = 67.0 (7.5) years) with a body mass index over 25 were recruited into this randomised, double-blind, placebo-controlled, cross-over trial (two one-week treatment periods, separated by a one-week washout period). During the placebo period, we observed a significant increase in blood CD38 concentrations from the baseline to 24 h (p-value = 0.019). This was not observed in the active period. Increased CD38 is reportedly associated with subsequent mitochondrial dysfunction and inflammation. Next, there was a decreasing trend of plasma 4-HNE levels, an oxidative stress biomarker, after a one-week intake of DailyColors™. Furthermore, following a one-month open-label follow-up in 26 participants, we observed hypermethylation of the candidate CpG site cg13108341 (q-value = 0.021), which was against the observed trend for this site during ageing. Taken together, while minimal effects were observed in this study, DailyColors™ supplementation may be beneficial by altering and alleviating age-related changes. Longer and larger scale trials of DailyColors™ supplementation are warranted.

2.
Biochem Soc Trans ; 52(1): 269-278, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372426

RESUMO

Recent evidence highlights the importance of trace metal micronutrients such as zinc (Zn) in coronary and vascular diseases. Zn2+ plays a signalling role in modulating endothelial nitric oxide synthase and protects the endothelium against oxidative stress by up-regulation of glutathione synthesis. Excessive accumulation of Zn2+ in endothelial cells leads to apoptotic cell death resulting from dysregulation of glutathione and mitochondrial ATP synthesis, whereas zinc deficiency induces an inflammatory phenotype, associated with increased monocyte adhesion. Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor known to target hundreds of different genes. Activation of NRF2 affects redox metabolism, autophagy, cell proliferation, remodelling of the extracellular matrix and wound healing. As a redox-inert metal ion, Zn has emerged as a biomarker in diagnosis and as a therapeutic approach for oxidative-related diseases due to its close link to NRF2 signalling. In non-vascular cell types, Zn has been shown to modify conformations of the NRF2 negative regulators Kelch-like ECH-associated Protein 1 (KEAP1) and glycogen synthase kinase 3ß (GSK3ß) and to promote degradation of BACH1, a transcriptional suppressor of select NRF2 genes. Zn can affect phosphorylation signalling, including mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinases and protein kinase C, which facilitate NRF2 phosphorylation and nuclear translocation. Notably, several NRF2-targeted proteins have been suggested to modify cellular Zn concentration via Zn exporters (ZnTs) and importers (ZIPs) and the Zn buffering protein metallothionein. This review summarises the cross-talk between reactive oxygen species, Zn and NRF2 in antioxidant responses of vascular cells against oxidative stress and hypoxia/reoxygenation.


Assuntos
Fator 2 Relacionado a NF-E2 , Zinco , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Zinco/metabolismo , Células Endoteliais/metabolismo , Estresse Oxidativo , Oxirredução , Glutationa/metabolismo
3.
Lancet Healthy Longev ; 5(1): e17-e30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183996

RESUMO

BACKGROUND: Sexually active older adults are often more susceptible to HIV and other sexually transmitted infections (STIs) due to various health conditions (especially a weakened immune system) and low use of condoms. We aimed to assess the global, regional, and national burdens and trends of HIV and other STIs in older adults from 1990 to 2019. METHODS: We retrieved data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 on the incidence and disability-adjusted life-years (DALYs) of HIV and other STIs (syphilis, chlamydia, gonorrhoea, trichomoniasis, and genital herpes) for older adults aged 60-89 years in 204 countries and territories from 1990 to 2019. Estimated annual percentage changes in the age-standardised incidence and DALY rates of HIV and other STIs, by age, sex, and Socio-demographic Index (SDI), were calculated to quantify the temporal trends. Spearman correlation analysis was used to examine the relationship between age-standardised rates and SDI. FINDINGS: In 2019, among older adults globally, there were an estimated 77 327 (95% uncertainty interval 59 443 to 97 648) new cases of HIV (age-standardised incidence rate 7·6 [5·9 to 9·6] per 100 000 population) and 26 414 267 (19 777 666 to 34 860 678) new cases of other STIs (2607·1 [1952·1 to 3440·8] per 100 000). The age-standardised incidence rate decreased by an average of 2·02% per year (95% CI -2·38 to -1·66) for HIV and remained stable for other STIs (-0·02% [-0·06 to 0·01]) from 1990 to 2019. The number of DALYs globally in 2019 was 1 905 099 (95% UI 1 670 056 to 2 242 807) for HIV and 132 033 (95% UI 83 512 to 225 630) for the other STIs. The age-standardised DALY rate remained stable from 1990 to 2019, with an average change of 0·97% (95% CI -0·54 to 2·50) per year globally for HIV but decreased by an annual average of 1·55% (95% CI -1·66 to -1·43) for other STIs. Despite the global decrease in the age-standardised incidence rate of HIV in older people from 1990 to 2019, many regions showed increases, with the largest increases seen in eastern Europe (average annual change 17·84% [14·16 to 21·63], central Asia (14·26% [11·35 to 17·25]), and high-income Asia Pacific (7·52% [6·54 to 8·51]). Regionally, the age-standardised incidence and DALY rates of HIV and other STIs decreased with increases in the SDI. INTERPRETATION: Although the incidence and DALY rates of HIV and STIs either declined or remained stable from 1990 to 2019, there were regional and demographic disparities. Health-care providers should be aware of the effects of ageing societies and other societal factors on the risk of HIV and other STIs in older adults, and develop age-appropriate interventions. The disparities in the allocation of health-care resources for older adults among regions of different SDIs should be addressed. FUNDING: Natural Science Foundation of China, Fujian Province's Third Batch of Flexible Introduction of High-Level Medical Talent Teams, Science and Technology Innovation Team (Tianshan Innovation Team) Project of Xinjiang Uighur Autonomous Region, Cure Alzheimer's Fund, Helse Sør-Øst, the Research Council of Norway, Molecule/VitaDAO, NordForsk Foundation, Akershus University Hospital, the Civitan Norges Forskningsfond for Alzheimers Sykdom, the Czech Republic-Norway KAPPA programme, and the Rosa Sløyfe/Norwegian Cancer Society & Norwegian Breast Cancer Society.


Assuntos
Neoplasias da Mama , Gonorreia , Infecções por HIV , Herpes Genital , Infecções Sexualmente Transmissíveis , Humanos , Idoso , Feminino , Carga Global da Doença , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções por HIV/epidemiologia
4.
Redox Biol ; 64: 102777, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315344

RESUMO

Zinc (Zn) has antioxidant, anti-inflammatory and anti-proliferative actions, with Zn dysregulation associated with coronary ischemia/reperfusion injury and smooth muscle cell dysfunction. As the majority of studies concerning Zn have been conducted under non-physiological hyperoxic conditions, we compare the effects of Zn chelation or supplementation on total intracellular Zn content, antioxidant NRF2 targeted gene transcription and hypoxia/reoxygenation-induced reactive oxygen species generation in human coronary artery smooth muscle cells (HCASMC) pre-adapted to hyperoxia (18 kPa O2) or normoxia (5 kPa O2). Expression of the smooth muscle marker SM22-α was unaffected by lowering pericellular O2, whereas calponin-1 was significantly upregulated in cells under 5 kPa O2, indicating a more physiological contractile phenotype under 5 kPa O2. Inductively coupled plasma mass spectrometry established that Zn supplementation (10 µM ZnCl2 + 0.5 µM pyrithione) significantly increased total Zn content in HCASMC under 18 but not 5 kPa O2. Zn supplementation increased metallothionein mRNA expression and NRF2 nuclear accumulation in cells under 18 or 5 kPa O2. Notably, NRF2 regulated HO-1 and NQO1 mRNA expression in response to Zn supplementation was only upregulated in cells under 18 but not 5 kPa. Furthermore, whilst hypoxia increased intracellular glutathione (GSH) in cells pre-adapted to 18 but not 5 kPa O2, reoxygenation had negligible effects on GSH or total Zn content. Reoxygenation-induced superoxide generation in cells under 18 kPa O2 was abrogated by PEG-superoxide dismutase but not by PEG-catalase, and Zn supplementation, but not Zn chelation, attenuated reoxygenation-induced superoxide generation in cells under 18 but not 5kPaO2, consistent with a lower redox stress under physiological normoxia. Our findings highlight that culture of HCASMC under physiological normoxia recapitulates an in vivo contractile phenotype and that effects of Zn on NRF2 signaling are altered by oxygen tension.


Assuntos
Vasos Coronários , Hiperóxia , Humanos , Vasos Coronários/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Hiperóxia/metabolismo , Glutationa/metabolismo , RNA Mensageiro/metabolismo , Suplementos Nutricionais
5.
Redox Biol ; 38: 101816, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340902

RESUMO

Activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is critical for vascular endothelial redox homeostasis in regions of high, unidirectional shear stress (USS), however the underlying mechanosensitive mediators are not fully understood. The endothelial glycocalyx is disrupted in arterial areas exposed to disturbed blood flow that also exhibit enhanced oxidative stress leading to atherogenesis. We investigated the contribution of glycocalyx sialic acids (SIA) to Nrf2 signaling in human endothelial cells (EC) exposed to atheroprotective USS or atherogenic low oscillatory shear stress (OSS). Cells exposed to USS exhibited a thicker glycocalyx and enhanced turnover of SIA which was reduced in cells cultured under OSS. Physiological USS, but not disturbed OSS, enhanced Nrf2-mediated expression of antioxidant enzymes, which was attenuated following SIA cleavage with exogenous neuraminidase. SIA removal disrupted kinase signaling involved in the nuclear accumulation of Nrf2 elicited by USS and promoted mitochondrial reactive oxygen species accumulation. Notably, knockdown of the endogenous sialidase NEU1 potentiated Nrf2 target gene expression, directly implicating SIA in regulation of Nrf2 signaling by USS. In the absence of SIA, deficits in Nrf2 responses to physiological flow were also associated with a pro-inflammatory EC phenotype. This study demonstrates that the glycocalyx modulates endothelial redox state in response to shear stress and provides the first evidence of an atheroprotective synergism between SIA and Nrf2 antioxidant signaling. The endothelial glycocalyx therefore represents a potential therapeutic target against EC dysfunction in cardiovascular disease and redox dyshomeostasis in ageing.


Assuntos
Células Endoteliais , Fator 2 Relacionado a NF-E2 , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ácidos Siálicos , Estresse Mecânico
6.
Redox Biol ; 37: 101708, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32949969

RESUMO

Ischemic stroke is associated with a surge in reactive oxygen species generation during reperfusion. The narrow therapeutic window for the delivery of intravenous thrombolysis and endovascular thrombectomy limits therapeutic options for patients. Thus, understanding the mechanisms regulating neurovascular redox defenses are key for improved clinical translation. Our previous studies in a rodent model of ischemic stroke established that activation of Nrf2 defense enzymes by pretreatment with sulforaphane (SFN) affords protection against neurovascular and neurological deficits. We here further investigate SFN mediated protection in mouse brain microvascular endothelial cells (bEnd.3) adapted long-term (5 days) to hyperoxic (18 kPa) and normoxic (5 kPa) O2 levels. Using an O2-sensitive phosphorescent nanoparticle probe, we measured an intracellular O2 level of 3.4 ± 0.1 kPa in bEnd 3 cells cultured under 5 kPa O2. Induction of HO-1 and GCLM by SFN (2.5 µM) was significantly attenuated in cells adapted to 5 kPa O2, despite nuclear accumulation of Nrf2. To simulate ischemic stroke, bEnd.3 cells were adapted to 18 or 5 kPa O2 and subjected to hypoxia (1 kPa O2, 1 h) and reoxygenation. In cells adapted to 18 kPa O2, reoxygenation induced free radical generation was abrogated by PEG-SOD and significantly attenuated by pretreatment with SFN (2.5 µM). Silencing Nrf2 transcription abrogated HO-1 and NQO1 induction and led to a significant increase in reoxygenation induced free radical generation. Notably, reoxygenation induced oxidative stress, assayed using the luminescence probe L-012 and fluorescence probes MitoSOX™ Red and FeRhoNox™-1, was diminished in cells cultured under 5 kPa O2, indicating an altered redox phenotype in brain microvascular cells adapted to physiological normoxia. As redox and other intracellular signaling pathways are critically affected by O2, the development of antioxidant therapies targeting the Keap1-Nrf2 defense pathway in treatment of ischemia-reperfusion injury in stroke, coronary and renal disease will require in vitro studies conducted under well-defined O2 levels.


Assuntos
Fator 2 Relacionado a NF-E2 , Oxigênio , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Hipóxia , Isotiocianatos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Sulfóxidos
7.
Free Radic Biol Med ; 155: 49-57, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387586

RESUMO

UVA irradiation of human dermal fibroblasts and endothelial cells induces an immediate transient increase in cytosolic Fe(II), as monitored by the fluorescence Fe(II) reporters, FeRhonox1 in cytosol and MitoFerroGreen in mitochondria. Both superoxide dismutase (SOD) inhibition by tetrathiomolybdate (ATM) and catalase inhibition by 3-amino-1, 2, 4-triazole (ATZ) increase and prolong the cytosolic Fe(II) signal after UVA irradiation. SOD inhibition with ATM also increases mitochondrial Fe(II). Thus, mitochondria do not source the UV-dependent increase in cytosolic Fe(II), but instead reflect and amplify raised cytosolic labile Fe(II) concentration. Hence control of cytosolic ferritin iron release is key to preventing UVA-induced inflammation. UVA irradiation also increases dermal endothelial cell H2O2, as monitored by the adenovirus vector Hyper-DAAO-NES(HyPer). These UVA-dependent changes in intracellular Fe(II) and H2O2 are mirrored by increases in cell superoxide, monitored with the luminescence probe L-012. UV-dependent increases in cytosolic Fe(II), H2O2 and L-012 chemiluminescence are prevented by ZnCl2 (10 µM), an effective inhibitor of Fe(II) transport via ferritin's 3-fold channels. Quercetin (10 µM), a potent membrane permeable Fe(II) chelator, abolishes the cytosolic UVA-dependent FeRhonox1, Fe(II) and HyPer, H2O2 and increase in MitoFerroGreen Fe(II) signals. The time course of the quercetin-dependent decrease in endothelial H2O2 correlates with the decrease in FeRhox1 signal and both signals are fully suppressed by preloading cells with ZnCl2. These results confirm that antioxidant enzyme activity is the key factor in controlling intracellular iron levels, and hence maintenance of cell antioxidant capacity is vitally important in prevention of skin aging and inflammation initiated by labile iron and UVA.


Assuntos
Ferritinas , Ferro , Senescência Celular , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Pele/metabolismo , Raios Ultravioleta
8.
Diabetologia ; 60(5): 911-914, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28194484

RESUMO

AIMS/HYPOTHESIS: Patients with type 1 diabetes and microalbuminuria are at high risk of cardiovascular disease (CVD) and end-stage renal disease. Soluble Klotho is an anti-ageing circulating hormone involved in phosphate metabolism and vascular homeostasis through protective effects on the endothelium and antioxidant actions. The role of soluble Klotho in patients with type 1 diabetes and microalbuminuria is unknown. METHODS: In a cross-sectional single-centre study we evaluated the levels of circulating serum soluble Klotho in 33 participants with type 1 diabetes and a history of microalbuminuria (receiving renin-angiotensin system [RAS] inhibitors) and 45 participants with type 1 diabetes without a history of microalbuminuria (not receiving RAS or other antihypertensive drugs). All participants had an eGFR >45 ml/min, duration of diabetes >20 years and no history of CVD. Serum soluble Klotho levels were measured by a validated immunoassay. RESULTS: Participants with microalbuminuria had significantly lower levels of serum Klotho compared with those without microalbuminuria (median [interquartile range], 659.3 [525.3, 827.6] vs 787.7 [629.5, 1007]; p = 0.023). This difference persisted after adjustment for variables including age and eGFR. In a subgroup of 30 individuals with and without microalbuminuria, other markers of phosphate balance were not significantly different. CONCLUSIONS/INTERPRETATION: In individuals with type 1 diabetes, microalbuminuria is associated with soluble Klotho deficiency. Further studies are required to determine whether soluble Klotho is causally related to the development of cardio-renal disease in type 1 diabetes.


Assuntos
Albuminúria/sangue , Diabetes Mellitus Tipo 1/sangue , Glucuronidase/sangue , Adulto , Fatores Etários , Idoso , Albuminúria/fisiopatologia , Albuminúria/prevenção & controle , Estudos Transversais , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Imunoensaio , Proteínas Klotho , Masculino , Pessoa de Meia-Idade
9.
J Cell Mol Med ; 21(3): 621-627, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696667

RESUMO

Vascular ageing in conditions such as atherosclerosis, diabetes and chronic kidney disease, is associated with the activation of the renin angiotensin system (RAS) and diminished expression of antioxidant defences mediated by the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). The anti-ageing hormone klotho promotes longevity and protects against cardiovascular and renal diseases. Klotho has been shown to activate Nrf2 and attenuate oxidative damage in neuronal cells, however, the mechanisms by which it protects against vascular smooth muscle cell VSMC dysfunction elicited by Angiotensin II (AngII) remain to be elucidated. AngII contributes to vascular ageing and atherogenesis by enhancing VSMC oxidative stress, senescence and apoptosis. This study demonstrates that soluble klotho (1 nM, 24 hrs) significantly induces expression of Nrf2 and the antioxidant enzymes haeme oxygenase (HO-1) and peroxiredoxin-1 (Prx-1) and enhances glutathione levels in human aortic smooth muscle cells (HASMC). Silencing of Nrf2 attenuated the induction of HO-1 and Prx-1 expression by soluble klotho. Furthermore, soluble klotho protected against AngII-mediated HASMC apoptosis and senescence via activation of Nrf2. Thus, our findings highlight a novel Nrf2-mediated mechanism underlying the protective actions of soluble klotho in HAMSC. Targeting klotho may thus represent a therapeutic strategy against VSMC dysfunction and cardiovascular ageing.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Aorta/metabolismo , Glucuronidase/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Angiotensina II/metabolismo , Apoptose/fisiologia , Células Cultivadas , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Proteínas Klotho , Oxirredução , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
10.
Free Radic Biol Med ; 92: 152-162, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26698668

RESUMO

The effects of physiological oxygen tension on Nuclear Factor-E2-Related Factor 2 (Nrf2)-regulated redox signaling remain poorly understood. We report the first study of Nrf2-regulated signaling in human primary endothelial cells (EC) adapted long-term to physiological O2 (5%). Adaptation of EC to 5% O2 had minimal effects on cell ultrastructure, viability, basal redox status or HIF1-α expression. Affymetrix array profiling and subsequent qPCR/protein validation revealed that induction of select Nrf2 target genes, HO-1 and NQO1, was significantly attenuated in cells adapted to 5% O2, despite nuclear accumulation and DNA binding of Nrf2. Diminished HO-1 induction under 5% O2 was stimulus independent and reversible upon re-adaptation to air or silencing of the Nrf2 repressor Bach1, notably elevated under 5% O2. Induction of GSH-related genes xCT and GCLM were oxygen and Bach1-insensitive during long-term culture under 5% O2, providing the first evidence that genes related to GSH synthesis mediate protection afforded by Nrf2-Keap1 defense pathway in cells adapted to physiological O2 levels encountered in vivo.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Vasos Coronários/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Oxigênio/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antioxidantes/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Veias/metabolismo
11.
J R Soc Interface ; 12(106)2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25977960

RESUMO

Cell contraction force plays an important role in wound healing, inflammation,angiogenesis and metastasis. This study describes a novel method to quantify single cell contraction force in vitro using human aortic adventitial fibroblasts embedded in a collagen gel. The technique is based on a depth sensing nano-indentation tester to measure the thickness and elasticity of collagen gels containing stimulated fibroblasts and a microscopy imaging system to estimate the gel area. In parallel, a simple theoretical model has been developed to calculate cell contraction force based on the measured parameters. Histamine (100 mM) was used to stimulate fibroblast contraction while the myosin light chain kinase inhibitor ML-7 (25 mM) was used to inhibit cell contraction. The collagen matrix used in the model provides a physiological environment for fibroblast contraction studies. Measurement of changes in collagen gel elasticity and thickness arising from histamine treatments provides a novel convenient technique to measure cell contraction force within a collagen matrix. This study demonstrates that histamine can elicit a significant increase in contraction force of fibroblasts embedded in collagen,while the Young's modulus of the gel decreases due to the gel degradation.


Assuntos
Colágeno/química , Fibroblastos/química , Fibroblastos/fisiologia , Géis/química , Testes de Dureza/métodos , Aorta/citologia , Aorta/fisiologia , Células Cultivadas , Dureza , Humanos , Estresse Mecânico
12.
Free Radic Biol Med ; 70: 174-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24583459

RESUMO

Atherosclerosis and associated cardiovascular complications such as stroke and myocardial infarction are major causes of morbidity and mortality. We have previously reported a significant increase in mRNA levels of the scavenger receptor CD36 in aortae of cholesterol-fed rabbits and shown that vitamin E treatment attenuated increased CD36 mRNA expression. In the present study, we further investigated the redox signaling pathways associated with protection against atherogenesis induced by high dietary cholesterol and correlated these with CD36 expression and the effects of vitamin E supplementation in a rabbit model. Male albino rabbits were assigned to either a control group fed with a low vitamin E diet alone or a test group fed with a low vitamin E diet containing 2% cholesterol in the absence or presence of daily intramuscular injections of vitamin E (50mg/kg). To elucidate the mechanisms by which vitamin E supplementation alters the effects of hypercholesterolemia in rabbit aortae, we measured peroxisome proliferator-activated receptor γ (PPARγ), ATP-binding cassette transporter A1 (ABCA1), and matrix metalloproteinase-1 (MMP-1) mRNA levels by quantitative RT-PCR and the expression of MMP-1, nuclear factor-erythroid 2-related factor 2 (Nrf2), and glutathione S-transferase α (GSTα) protein by immunoblotting. The increased MMP-1 and decreased GSTα expression observed suggests that a cholesterol-rich diet contributes to the development of atherosclerosis, whereas vitamin E supplementation affords protection by decreasing MMP-1 and increasing PPARγ, GSTα, and ABCA1 levels in aortae of rabbits fed a cholesterol-rich diet. Notably, protein expression of Nrf2, the antioxidant transcription factor, was increased in both the cholesterol-fed and the vitamin E-supplemented groups. Although Nrf2 activation can promote CD36-mediated cholesterol uptake by macrophages, the increased induction of Nrf2-mediated antioxidant genes is likely to contribute to decreased lesion progression. Thus, our study demonstrates that Nrf2 can mediate both pro- and antiatherosclerotic effects.


Assuntos
Aterosclerose/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , PPAR gama/metabolismo , Vitamina E/administração & dosagem , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/patologia , Colesterol na Dieta/administração & dosagem , Dieta Hiperlipídica , Regulação da Expressão Gênica , Glutationa Transferase/biossíntese , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/patologia , Isoenzimas/biossíntese , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Coelhos , Transdução de Sinais/efeitos dos fármacos
13.
J Neurosci ; 33(37): 14767-77, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24027277

RESUMO

The cytoplasmic regulatory protein p62 (Sequestosome 1/A170) is known to modulate various receptor-mediated intracellular signaling pathways. p62 deficiency was shown to result in mature-onset obesity in mice, but the mechanisms underlying this abnormality remained unclear. Here we report that hyperphagia due to central leptin resistance is the cause of obesity in p62(-/-) mice. We found that these mice show hyperphagia. Restriction of food to the amount eaten by wild-type mice prevented excess body weight gain and fat accumulation, suggesting that overfeeding is the primary cause of obesity in p62(-/-) mice. Brain-specific p62 deficiency caused mature-onset obesity to the same extent as in p62(-/-) mice, further supporting a neuronal mechanism as the major cause of obesity in these mice. Immunohistochemical analysis revealed that p62 is highly expressed in hypothalamic neurons, including POMC neurons in the arcuate nucleus. Central leptin resistance was observed even in young preobese p62(-/-) mice. We found a defect in intracellular distribution of the transcription factor Stat3, which is essential for the action of leptin, in p62(-/-) mice. These results indicate that brain p62 plays an important role in bodyweight control by modulating the central leptin-signaling pathway and that lack of p62 in the brain causes leptin resistance, leading to hyperphagia. Thus, p62 could be a clinical target for treating obesity and metabolic syndrome.


Assuntos
Encéfalo/efeitos dos fármacos , Hiperfagia/genética , Hiperfagia/patologia , Leptina/farmacologia , Fatores de Transcrição/deficiência , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Encéfalo/citologia , Encéfalo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Embrião de Mamíferos , Privação de Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Técnicas In Vitro , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/farmacologia , Consumo de Oxigênio/genética , Pró-Opiomelanocortina/genética , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Transcrição TFIIH
14.
Diabetes ; 62(12): 4088-97, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23974919

RESUMO

In utero exposure to gestational diabetes mellitus (GDM) is associated with an increased risk of type 2 diabetes and cardiovascular disease in later life, yet the underlying mechanisms remain to be elucidated. We examined the effects of GDM on the proteome, redox status, and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene expression in human fetal endothelial cells. Proteomic analysis revealed that proteins involved in redox homeostasis were significantly altered in GDM and associated with increased mitochondrial superoxide generation, protein oxidation, DNA damage, and diminished glutathione (GSH) synthesis. In GDM cells, the lipid peroxidation product 4-hydroxynonenal (HNE) failed to induce nuclear Nrf2 accumulation and mRNA and/or protein expression of Nrf2 and its target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), Bach1, cystine/glutamate transporter, and glutamate cysteine ligase. Although methylation of CpG islands in Nrf2 or NQO1 promoters was unaltered by GDM, decreased DJ-1 and increased phosphorylated glycogen synthase kinase 3ß levels may account for impaired Nrf2 signaling. HNE-induced increases in GSH and NQO1 levels were abrogated by Nrf2 small interfering RNA in normal cells, and overexpression of Nrf2 in GDM cells partially restored NQO1 induction. Dysregulation of Nrf2 in fetal endothelium may contribute to the increased risk of type 2 diabetes and cardiovascular disease in offspring.


Assuntos
Antioxidantes/metabolismo , Diabetes Gestacional/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/fisiologia , Adulto , Feminino , Glutationa/metabolismo , Humanos , Oxirredução , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
15.
Free Radic Biol Med ; 64: 4-11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23880293

RESUMO

MicroRNAs are now thought to play a central role in the regulation of many diverse aspects of cell biology; however, it remains to be fully elucidated how microRNAs can orchestrate cellular redox homeostasis, which plays a central role in a multitude of physiological and pathophysiological processes. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a "master regulator" of cell survival through the coordinated induction of phase II and antioxidant defense enzymes to counteract oxidative stress and modulate redox signaling events. MicroRNAs are able to "fine-tune" the regulation of processes including those directly interacting with the Nrf2 pathway and the generation of reactive oxygen species (ROS). This review highlights that cellular redox homeostasis can be regulated by microRNAs through their modulation of Nrf2-driven antioxidant gene expression as well as key enzymes that generate ROS, which in turn can alter the biogenesis and processing of microRNAs. Therefore redox sensitive microRNAs or "redoximiRs" add an important regulatory mechanism for redox signaling beyond the well-characterized actions of Nrf2. The potential exists for microRNA-based therapies where diminished antioxidant defenses and dysregulated redox signaling can lead to cardiovascular diseases, cancers, neurodegeneration, and accelerated aging.


Assuntos
Senilidade Prematura/metabolismo , Doenças Cardiovasculares/metabolismo , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/patologia , Antioxidantes/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Regulação da Expressão Gênica , Homeostase , Humanos , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Int J Biochem Cell Biol ; 44(8): 1315-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575091

RESUMO

Excessive reactive oxygen species (ROS) generation is as a major cause of oxidative stress and is implicated in cellular dysfunction in aging, cardiovascular disease and other pathologies. As antioxidant trials have largely failed to provide protection in humans, research focus has shifted to activating endogenous antioxidant defenses. In vascular models, activators of the transcription factor NF-E2 related factor 2 (Nrf2) pathway have been shown to restore redox homeostasis by increasing antioxidant/electrophilic response element-mediated (ARE/EpRE) expression of phase II and antioxidant enzymes, including NAD(P)H:quinone oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1) and γ-glutamate cysteine ligase catalytic subunit (GCLC). Nrf2 activators disrupt basal ubiquitin-dependent degradation of Nrf2 by the 26S proteasome, leading to nuclear Nrf2 accumulation and gene induction. This review examines the evidence for crosstalk between Nrf2 and the proteasome, highlighting the mechanisms by which select Nrf2 activators regulate stress-induced proteasomal activity and removal of oxidized proteins. Exploiting the dual action of natural Nrf2 inducers may provide a novel therapeutic strategy for restoring cellular redox homeostasis in aging and cardiovascular related diseases such diabetes, atherosclerosis and stroke.


Assuntos
Envelhecimento/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Doenças Vasculares/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Expressão Gênica/efeitos dos fármacos , Humanos , Isotiocianatos , Modelos Biológicos , Fator 2 Relacionado a NF-E2/genética , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica/efeitos dos fármacos , Sulfóxidos , Tiocianatos/farmacologia , Doenças Vasculares/genética , Doenças Vasculares/terapia
17.
Methods Mol Biol ; 806: 265-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22057458

RESUMO

The present protocol offers an economical option for the isolation and culture of human endothelial cells for vascular cell biology research due to the non-invasive collection procedure being devoid of ethical concerns and ease of the isolation technique, expansion and maintenance under standard cell culture conditions. The human umbilical vein endothelial cell (HUVEC) model is useful for any research on general properties of human endothelium, but as these cells are of foetal and venous origin, other sources could be more appropriate models for studies on specific pathological areas, for example, atherosclerosis or cancer angiogenesis. Nevertheless, HUVEC still represent the most simple and available human vascular cell type widely used in biomedical research.


Assuntos
Separação Celular/métodos , Células Endoteliais/citologia , Cultura Primária de Células/métodos , Veias Umbilicais/citologia , Criopreservação , Células Endoteliais/metabolismo , Humanos , Veias Umbilicais/metabolismo
18.
Hypertension ; 57(4): 833-40, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21300668

RESUMO

We reported previously that dietary isoflavones modulate arterial blood pressure in vivo and that the daidzein metabolite equol rapidly activates endothelial NO synthase (eNOS) via Akt and extracellular signal-regulated kinase 1/2-dependent signaling. In this study, we report the first evidence in human endothelial cells that acute stimulation of mitochondrial superoxide generation by equol (100 nmol/L) is required for eNOS activation. Scavengers of superoxide (superoxide dismutase and manganese [III] tetrakis[1-methyl-4-pyridyl]porphyrin) abrogated equol stimulated Akt and eNOS phosphorylation, and the mitochondrial complex I inhibitor rotenone inhibited Akt, extracellular signal-regulated kinase 1/2, and eNOS phosphorylation, as well as NO-mediated increases in intracellular cGMP. Equol also induced rapid alterations in F-actin fiber distribution, with depolymerization of F-actin with cytochalasin D abrogating equol-stimulated mitochondrial superoxide generation. Treatment of cells with pertussis toxin or inhibition of GPR30/epidermal growth factor receptor kinase transactivation prevented equol-induced activation of extracellular signal-regulated kinase 1/2 via c-Src, Akt, and eNOS. Moreover, inhibition of epidermal growth factor receptor kinase activation with AG-1478 abrogated equol-stimulated mitochondrial reactive oxygen species generation and subsequent kinase and eNOS activation. Our findings suggest that equol-stimulated mitochondrial reactive oxygen species modulate endothelial redox signaling and NO release involving transactivation of epidermal growth factor receptor kinase and reorganization of the F-actin cytoskeleton. Identification of these novel actions of equol may provide valuable insights for therapeutic strategies to restore endothelial function in cardiovascular disease.


Assuntos
Actinas/metabolismo , Células Endoteliais/metabolismo , Isoflavonas/farmacologia , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fitoestrógenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Variância , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Equol , Receptores ErbB/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Receptores de Estrogênio , Transdução de Sinais/efeitos dos fármacos , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo
19.
Antioxid Redox Signal ; 14(3): 469-87, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20524845

RESUMO

Type 2 diabetes is an age-related disease associated with vascular pathologies, including severe blindness, renal failure, atherosclerosis, and stroke. Reactive oxygen species (ROS), especially mitochondrial ROS, play a key role in regulating the cellular redox status, and an overproduction of ROS may in part underlie the pathogenesis of diabetes and other age-related diseases. Cells have evolved endogenous defense mechanisms against sustained oxidative stress such as the redox-sensitive transcription factor nuclear factor E2-related factor 2 (Nrf2), which regulates antioxidant response element (ARE/electrophile response element)-mediated expression of detoxifying and antioxidant enzymes and the cystine/glutamate transporter involved in glutathione biosynthesis. We hypothesize that diminished Nrf2/ARE activity contributes to increased oxidative stress and mitochondrial dysfunction in the vasculature leading to endothelial dysfunction, insulin resistance, and abnormal angiogenesis observed in diabetes. Sustained hyperglycemia further exacerbates redox dysregulation, thereby providing a positive feedback loop for severe diabetic complications. This review focuses on the role that Nrf2/ARE-linked gene expression plays in regulating endothelial redox homeostasis in health and type 2 diabetes, highlighting recent evidence that Nrf2 may provide a therapeutic target for countering oxidative stress associated with vascular disease and aging.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Células Endoteliais/fisiologia , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Animais , Transporte de Elétrons , Expressão Gênica , Humanos , Longevidade/fisiologia , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Obesidade/fisiopatologia , Oxirredução , Estresse Oxidativo , Elementos de Resposta
20.
Free Radic Res ; 44(10): 1125-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20836660

RESUMO

Lipid peroxidation (LPO) product accumulation in human tissues is a major cause of tissular and cellular dysfunction that plays a major role in ageing and most age-related and oxidative stress-related diseases. The current evidence for the implication of LPO in pathological processes is discussed in this review. New data and literature review are provided evaluating the role of LPO in the pathophysiology of ageing and classically oxidative stress-linked diseases, such as neurodegenerative diseases, diabetes and atherosclerosis (the main cause of cardiovascular complications). Striking evidences implicating LPO in foetal vascular dysfunction occurring in pre-eclampsia, in renal and liver diseases, as well as their role as cause and consequence to cancer development are addressed.


Assuntos
Envelhecimento/fisiologia , Aterosclerose/fisiopatologia , Diabetes Mellitus/fisiopatologia , Peroxidação de Lipídeos/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Humanos , Hepatopatias/fisiopatologia , Neoplasias/fisiopatologia , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA