Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065613

RESUMO

(1) Background: Salix species occurring in Finland have not been well studied for their antimicrobial potential, despite their frequent use for lung and stomach problems in traditional medicine. Thus, twig extracts of three species of Salix that are found naturally in Finland and one cultivated species were screened for their antimicrobial properties against human pathogenic bacteria. S. starkeana and S. x pendulina were screened for antibacterial effects for the first time. (2) Methods: An agar diffusion and a microplate method were used for the screenings. Time-kill effects were measured using a plate-count and a microplate method. A DPPH-method using a qualitative TLC-analysis was used to detect antioxidant compounds in antimicrobial extracts. Metabolites from a S. myrsinifolia extract showing good antibacterial effects were identified using UPLC/QTOF-MS. (3) Results: A methanol extract of S. starkeana was particularly active against B. cereus (MIC 625 µg/mL), and a methanol extract of S. myrsinifolia showed good activity against S. aureus and B. cereus (MIC 1250 µg/mL) and showed bactericidal effects during a 24 h incubation of B. cereus. Moreover, a decoction of S. myrsinifolia resulted in good growth inhibition against P. aeruginosa. Our UPLC/QTOF-MS results indicated that proanthocyanidins (PAs), and especially the dimer procyanidin B1 (m/z 577) and other procyanidin derivatives, including highly polymerized proanthocyanidins, were abundant in S. myrsinifolia methanol extracts. Procyanidin B1 and its monomer catechin, as well as taxifolin and p-hydroxycinnamic acid, all present in S. myrsinifolia twigs, effectively inhibited B. cereus (MIC 250 µg/mL). (4) Conclusions: This study indicates that Finnish Salix species contain an abundance of antibacterial condensed tannins, phenolic acids and other polyphenols that deserve further research for the antibacterial mechanisms of action.

2.
Nat Commun ; 14(1): 2356, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095097

RESUMO

Accumulating evidence suggests mitochondria as key modulators of normal and premature aging, yet whether primary oxidative phosphorylation (OXPHOS) deficiency can cause progeroid disease remains unclear. Here, we show that mice with severe isolated respiratory complex III (CIII) deficiency display nuclear DNA damage, cell cycle arrest, aberrant mitoses, and cellular senescence in the affected organs such as liver and kidney, and a systemic phenotype resembling juvenile-onset progeroid syndromes. Mechanistically, CIII deficiency triggers presymptomatic cancer-like c-MYC upregulation followed by excessive anabolic metabolism and illicit cell proliferation against lack of energy and biosynthetic precursors. Transgenic alternative oxidase dampens mitochondrial integrated stress response and the c-MYC induction, suppresses the illicit proliferation, and prevents juvenile lethality despite that canonical OXPHOS-linked functions remain uncorrected. Inhibition of c-MYC with the dominant-negative Omomyc protein relieves the DNA damage in CIII-deficient hepatocytes in vivo. Our results connect primary OXPHOS deficiency to genomic instability and progeroid pathogenesis and suggest that targeting c-MYC and aberrant cell proliferation may be therapeutic in mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Progéria , Camundongos , Animais , Progéria/patologia , Complexo III da Cadeia de Transporte de Elétrons , Senescência Celular/genética , Ciclo Celular
3.
Viruses ; 15(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36680161

RESUMO

Mixed virus infections threaten crop production because interactions between the host and the pathogen mix may lead to viral synergism. While individual infections by potato virus A (PVA), a potyvirus, and potato virus X (PVX), a potexvirus, can be mild, co-infection leads to synergistic enhancement of PVX and severe symptoms. We combined image-based phenotyping with metabolite analysis of single and mixed PVA and PVX infections and compared their effects on growth, photosynthesis, and metabolites in Nicotiana benthamiana. Viral synergism was evident in symptom severity and impaired growth in the plants. Indicative of stress, the co-infection increased leaf temperature and decreased photosynthetic parameters. In contrast, singly infected plants sustained photosynthetic activity. The host's metabolic response differed significantly between single and mixed infections. Over 200 metabolites were differentially regulated in the mixed infection: especially defense-related metabolites and aromatic and branched-chain amino acids increased compared to the control. Changes in the levels of methionine cycle intermediates and a low S-adenosylmethionine/S-adenosylhomocysteine ratio suggested a decline in the methylation potential in co-infected plants. The decreased ratio between reduced glutathione, an important scavenger of reactive oxygen species, and its oxidized form, indicated that severe oxidative stress developed during co-infection. Based on the results, infection-associated oxidative stress is successfully controlled in the single infections but not in the synergistic infection, where activated defense pathways are not sufficient to counter the impact of the infections on plant growth.


Assuntos
Coinfecção , Potexvirus , Nicotiana , Potexvirus/fisiologia , Fotossíntese , Doenças das Plantas
4.
Mol Syst Biol ; 17(3): e9526, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750001

RESUMO

Molecular and functional profiling of cancer cell lines is subject to laboratory-specific experimental practices and data analysis protocols. The current challenge therefore is how to make an integrated use of the omics profiles of cancer cell lines for reliable biological discoveries. Here, we carried out a systematic analysis of nine types of data modalities using meta-analysis of 53 omics studies across 12 research laboratories for 2,018 cell lines. To account for a relatively low consistency observed for certain data modalities, we developed a robust data integration approach that identifies reproducible signals shared among multiple data modalities and studies. We demonstrated the power of the integrative analyses by identifying a novel driver gene, ECHDC1, with tumor suppressive role validated both in breast cancer cells and patient tumors. The multi-modal meta-analysis approach also identified synthetic lethal partners of cancer drivers, including a co-dependency of PTEN deficient endometrial cancer cells on RNA helicases.


Assuntos
Genes Supressores de Tumor , Genômica , Algoritmos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Bases de Dados Genéticas , Epistasia Genética , Feminino , Humanos , Espectrometria de Massas , Reprodutibilidade dos Testes , Mutações Sintéticas Letais
5.
RNA Biol ; 18(10): 1382-1389, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33356826

RESUMO

Post-transcriptional RNA modifications play an important role in cellular metabolism with homoeostatic disturbances manifesting as a wide repertoire of phenotypes, reduced stress tolerance and translational perturbation, developmental defects, and diseases, such as type II diabetes, leukaemia, and carcinomas. Hence, there has been an intense effort to develop various methods for investigating RNA modifications and their roles in various organisms, including sequencing-based approaches and, more frequently, liquid chromatography-mass spectrometry (LC-MS)-based methods. Although LC-MS offers numerous advantages, such as being highly sensitive and quantitative over a broad detection range, some stationary phase chemistries struggle to resolve positional isomers. Furthermore, the demand for detailed analyses of complex biological samples often necessitates long separation times, hampering sample-to-sample turnover and making multisample analyses time consuming. To overcome this limitation, we have developed an ultra-performance LC-MS (UPLC-MS) method that uses an octadecyl carbon chain (C18)-bonded silica matrix for the efficient separation of 50 modified ribonucleosides, including positional isomers, in a single 9-min sample-to-sample run. To validate the performance and versatility of our method, we analysed tRNA modification patterns of representative microorganisms from each domain of life, namely Archaea (Methanosarcina acetivorans), Bacteria (Pseudomonas syringae), and Eukarya (Saccharomyces cerevisiae). Additionally, our method is flexible and readily applicable for detection and relative quantification using stable isotope labelling and targeted approaches like multiple reaction monitoring (MRM). In conclusion, this method represents a fast and robust tool for broad-range exploration and quantification of ribonucleosides, facilitating future homoeostasis studies of RNA modification in complex biological samples.


Assuntos
Methanosarcina/genética , Pseudomonas syringae/genética , RNA de Transferência/química , Ribonucleosídeos/análise , Saccharomyces cerevisiae/genética , Carbono/química , Cromatografia Líquida de Alta Pressão , Marcação por Isótopo , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Fúngico/genética , Espectrometria de Massas em Tandem
6.
Antiviral Res ; 182: 104916, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798603

RESUMO

Chemical modifications of small interfering (si)RNAs are used to enhance their stability and potency, and to reduce possible off-target effects, including immunogenicity. We have earlier introduced highly effective antiviral siRNA swarms against herpes simplex virus (HSV), targeting 653 bp of the essential UL29 viral gene. Here, we report a method for enzymatic production and antiviral use of 2'-fluoro-modified siRNA swarms. Utilizing the RNA-dependent RNA polymerase from bacteriophage phi6, we produced 2'-F-siRNA swarms containing either all or a fraction of modified adenosine, cytidine or uridine residues in the antisense strand of the UL29 target. The siRNA containing modified pyrimidines demonstrated high resistance to RNase A and the antiviral potency of all the UL29-specific 2'-F-siRNA swarms was 100-fold in comparison with the unmodified counterpart, without additional cytotoxicity. Modest stimulation of innate immunity signaling, including induced expression of both type I and type III interferons, as well as interferon-stimulated gene 54, by 2'-F-cytidine and 2'-F-uridine modified siRNA swarms occurred at early time points after transfection while the 2'-F-adenosine-containing siRNA was similar to the unmodified antiviral siRNA swarm in this respect. The antiviral efficacy of the 2'-F-siRNA swarms and the elicited cellular innate responses did not correlate suggesting that innate immunity pathways do not significantly contribute to the observed enhanced antiviral activity of the modified siRNAs. The results support further applications of enzymatically produced siRNA molecules with incorporated adenosine nucleotides, carrying fluoro-modification on ribose C2' position, for further antiviral studies in vitro and in vivo.


Assuntos
Antivirais/farmacologia , Sobrevivência Celular , Herpesvirus Humano 1/efeitos dos fármacos , Imunidade Inata , RNA Interferente Pequeno/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Adenosina/metabolismo , Bacteriófago phi 6/enzimologia , Linhagem Celular , Linhagem Celular Tumoral , Citidina/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Herpesvirus Humano 1/imunologia , Humanos , RNA Interferente Pequeno/síntese química , Transfecção , Uridina/metabolismo , Proteínas Virais/antagonistas & inibidores
7.
Cancer Res ; 77(12): 3352-3363, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28416481

RESUMO

Western-style diets (WD) high in fat and scarce in fiber and vitamin D increase risks of colorectal cancer. Here, we performed a long-term diet study in mice to follow tumorigenesis and characterize structural and metabolic changes in colon mucosa associated with WD and predisposition to colorectal cancer. WD increased colon tumor numbers, and mucosa proteomic analysis indicated severe deregulation of intracellular bile acid (BA) homeostasis and activation of cell proliferation. WD also increased crypt depth and colon cell proliferation. Despite increased luminal BA, colonocytes from WD-fed mice exhibited decreased expression of the BA transporters FABP6, OSTß, and ASBT and decreased concentrations of secondary BA deoxycholic acid and lithocholic acid, indicating reduced activity of the nuclear BA receptor FXR. Overall, our results suggest that WD increases cancer risk by FXR inactivation, leading to BA deregulation and increased colon cell proliferation. Cancer Res; 77(12); 3352-63. ©2017 AACR.


Assuntos
Ácidos e Sais Biliares/metabolismo , Transformação Celular Neoplásica/patologia , Dieta Ocidental/efeitos adversos , Homeostase/fisiologia , Mucosa Intestinal/patologia , Animais , Western Blotting , Proliferação de Células , Cromatografia Líquida , Colo/patologia , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Feminino , Ensaios de Triagem em Larga Escala , Mucosa Intestinal/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Distribuição Aleatória , Receptores Citoplasmáticos e Nucleares
8.
Plant Cell Environ ; 38(5): 941-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25040832

RESUMO

Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors.


Assuntos
Flavonoides/metabolismo , Pisum sativum/efeitos da radiação , Folhas de Planta/efeitos da radiação , Cor , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Fenóis/metabolismo , Epiderme Vegetal/metabolismo , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/metabolismo , Raios Ultravioleta
9.
Plant Physiol ; 161(2): 744-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23250626

RESUMO

Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280-315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315-400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Transcriptoma/efeitos da radiação , Raios Ultravioleta , Aclimatação/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Carbono-Nitrogênio Liases , Clorofila/metabolismo , Cromatografia Líquida , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Espectrometria de Massas , Mutação , Transferases de Grupos Nitrogenados/genética , Transferases de Grupos Nitrogenados/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA