Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Kidney Int ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723749

RESUMO

Monoclonal Ig crystalline nephropathies are rare lesions resulting from precipitation of monoclonal Igs in the kidney as crystalline inclusions. They can be categorized into lesions with predominant intracellular crystals (light chain [LC] proximal tubulopathy, LC crystal-storing histiocytosis, and LC crystalline podocytopathy) and lesions with predominant extracellular crystals (crystalglobulin-induced nephropathy and crystalline variant of LC cast nephropathy). The majority of these lesions are associated with low tumor burden lymphoproliferative disorders, with the exception of crystalline variant of LC cast nephropathy. Extrarenal involvement (e.g., skin and cornea) is frequent. Kidney biopsy is the cornerstone for diagnosis, which often requires electron microscopy and antigen retrieval. A thorough hematologic workup and evaluation of extrarenal involvement is mandatory for management. Treatment of these lesions is with clone-directed therapy, with the goal of achieving hematologic very good partial response or complete response, which preserves or improves kidney function. In vitro and in vivo studies, animal models, and novel sequencing techniques have been invaluable tools to understand the pathogenesis of LC proximal tubulopathy and can be used to increase our limited knowledge of the pathogenesis of the other monoclonal Ig crystalline nephropathies. This review provides an update on the pathology, renal and hematologic characteristics, extrarenal manifestations, prognosis, treatment, and pathogenesis of monoclonal Ig crystalline nephropathies.

2.
Am J Kidney Dis ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38266972

RESUMO

Monoclonal immunoglobulin (MIg) crystalline nephropathies are rare lesions resulting from precipitation of MIgs in the kidney as intracellular or extracellular crystals. We describe a patient with multiple myeloma (IgGλ) and diabetes who presented with nephrotic range proteinuria. Kidney biopsy revealed membranous nephropathy superimposed on diabetic glomerulosclerosis. Glomeruli were negative for PLA2R, THSD7A, and NELL-1. Ultrastructurally, the subepithelial deposits were composed of crystals (ranging from rhomboid to rod to needle shaped), which failed to stain for immunoglobulins by routine immunofluorescence but stained for IgG+λ by paraffin immunofluorescence after pronase digestion. RNA-based immunoglobulin repertoire sequencing performed on bone marrow aspirate identified an IgGλ (γ1) clone, which was highly atypical, combining an extensively mutated (23.6%) Ig heavy chain derived from the IGHV1-24 with low pI and unusual mutations and a light chain derived from an extremely rare germline gene (IGLV10-54). This report expands the pathologic spectrum of MIg crystalline nephropathies by describing a unique case of crystalline nephropathy with IgGλ deposits manifesting as membranous nephropathy.

3.
Kidney Int ; 103(3): 616-626, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581019

RESUMO

Monoclonal immunoglobulin light chain (LC) crystalline inclusions within podocytes are rare, poorly characterized entities. To provide more insight, we now present the first clinicopathologic series of LC crystalline podocytopathy (LCCP) encompassing 25 patients (68% male, median age 56 years). Most (80%) patients presented with proteinuria and chronic kidney disease, with nephrotic syndrome in 28%. Crystalline keratopathy and Fanconi syndrome were present in 22% and 10%, respectively. The hematologic condition was monoclonal gammopathy of renal significance (MGRS) in 55% and multiple myeloma in 45%. The serum monoclonal immunoglobulin was IgG κappa in 86%. Histologically, 60% exhibited focal segmental glomerulosclerosis (FSGS), often collapsing. Ultrastructurally, podocyte LC crystals were numerous with variable effacement of foot processes. Crystals were also present in proximal tubular cells as light chain proximal tubulopathy (LCPT) in 80% and in interstitial histiocytes in 36%. Significantly, frozen-section immunofluorescence failed to reveal the LC composition of crystals in 88%, requiring paraffin-immunofluorescence or immunohistochemistry, with identification of kappa LC in 87%. The LC variable region gene segment, determined by mass spectrometry of glomeruli or bone marrow plasma cell sequencing, was IGKV1-33 in four and IGKV3-20 in one. Among 21 patients who received anti-plasma cell-directed chemotherapy, 50% achieved a kidney response, which depended on a deep hematologic response. After a median follow-up of 36 months, 26% progressed to kidney failure and 17% died. The mean kidney failure-free survival was 57.6 months and was worse in those with FSGS. In sum, LCCP is rare, mostly associates with IgG κappa MGRS, and frequently has concurrent LCPT, although Fanconi syndrome is uncommon. Paraffin-immunofluorescence and electron microscopy are essential to prevent misdiagnosis as primary FSGS since kidney survival depends on early diagnosis and subsequent clone-directed therapy.


Assuntos
Síndrome de Fanconi , Glomerulosclerose Segmentar e Focal , Nefropatias , Insuficiência Renal , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Glomerulosclerose Segmentar e Focal/patologia , Síndrome de Fanconi/patologia , Parafina , Rim/patologia , Nefropatias/patologia , Insuficiência Renal/patologia , Imunoglobulina G
4.
Front Immunol ; 13: 1008449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458006

RESUMO

Monoclonal immunoglobulin (Ig) light chain amyloidosis (AL) is a rare but severe disease that may occur when a B or plasma cell clone secretes an excess of free Ig light chains (LCs). Some of these LCs tend to aggregate into organized fibrils with a ß-sheet structure, the so-called amyloid fibrils, and deposit into the extracellular compartment of organs, such as the heart or kidneys, causing their dysfunction. Recent findings have confirmed that the core of the amyloid fibrils is constituted by the variable (V) domain of the LCs, but the mechanisms underlying the unfolding and aggregation of this fragment and its deposition are still unclear. Moreover, in addition to the mechanical constraints exerted by the massive accumulation of amyloid fibrils in organs, the direct toxicity of these variable domain LCs, full-length light chains, or primary amyloid precursors (oligomers) seems to play a role in the pathogenesis of the disease. Many in vitro studies have focused on these topics, but the variability of this disease, in which each LC presents unique properties, and the extent and complexity of affected organs make its study in vivo very difficult. Accordingly, several groups have focused on the development of animal models for years, with some encouraging but mostly disappointing results. In this review, we discuss the experimental models that have been used to better understand the unknowns of this pathology with an emphasis on in vivo approaches. We also focus on why reliable AL amyloidosis animal models remain so difficult to obtain and what this tells us about the pathophysiology of the disease.


Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina , Animais , Transporte Biológico , Citoesqueleto , Coração , Rim
5.
Kidney Int ; 101(2): 331-337, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767830

RESUMO

The diagnostic approach of monoclonal gammopathy of renal significance is based on the detection of a monoclonal immunoglobulin in the blood and urine, and the identification of the underlying clone through bone marrow and/or peripheral blood cytologic and flow cytometry analysis. However, the monoclonal component and its corresponding clone may be undetectable using these routine techniques. Since clone identification is the cornerstone for guiding therapy and assessing disease response, more sensitive methods are required. We recently developed a high-throughput sequencing assay from bone marrow mRNA encoding immunoglobulins (RACE-RepSeq). This technique provides both full-length V(D)J region (variable, diversity and joining genes that generate unique receptors as antigen receptors) of the monoclonal immunoglobulin and the dominant immunoglobulin repertoire. This allows analysis of mutational patterns, immunoglobulin variable gene frequencies and diversity due to somatic hypermutation. Here, we evaluated the diagnostic performance of RACE-RepSeq in 16 patients with monoclonal-associated kidney lesions, and low serum monoclonal immunoglobulin and free light chain levels at diagnosis. Bone marrow immunohistochemical analysis was negative in all 11 patients so tested and 7 of 12 patients had no detectable clone matching the kidney deposits using flow cytometry analysis. By contrast, RACE-RepSeq detected a dominant clonal light chain sequence of matched isotype with respect to kidney deposits in all patients. Thus, high throughput mRNA sequencing appears highly sensitive to detect subtle clonal disorders in monoclonal gammopathy of renal significance and suggest this novel approach could help improve the management of this kidney disease.


Assuntos
Nefropatias , Paraproteinemias , Humanos , Cadeias Leves de Imunoglobulina , Rim/patologia , Nefropatias/diagnóstico , Nefropatias/genética , Nefropatias/terapia , Paraproteinemias/diagnóstico , Paraproteinemias/genética , Paraproteinemias/terapia , RNA
6.
Kidney Int ; 101(1): 152-163, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767832

RESUMO

The type of monoclonal light chain nephropathy is thought to be largely a function of the structural and physiochemical properties of light chains; hence most affected patients have only one light chain kidney disease type. Here, we report the first series of kidney light chain deposition disease (LCDD) concomitant with light chain amyloidosis (LCDD+AL), with or without light chain cast nephropathy (LCCN). Our LCDD+AL cohort consisted of 37 patients (54% females, median age 70 years (range 40-86)). All cases showed Congo red-positive amyloid deposits staining for one light chain isotype on immunofluorescence (62% lambda), and LCDD with diffuse linear staining of glomerular and tubular basement membranes for one light chain isotype (97% same isotype as the amyloidogenic light chain) and ultrastructural non-fibrillar punctate deposits. Twelve of 37 cases (about 1/3 of patients) had concomitant LCCN of same light chain isotype. Proteomic analysis of amyloid and/or LCDD deposits in eight revealed a single light chain variable domain mutable subgroup in all cases (including three with separate microdissections of LCDD and amyloid light chain deposits). Clinical data on 21 patients showed proteinuria (100%), hematuria (75%), kidney insufficiency and nephrotic syndrome (55%). Extra-kidney involvement was present in 43% of the patients. Multiple myeloma occurred in 68% (about 2/3) of these patients; none had lymphoma. On follow up (median 16 months), 63% developed kidney failure and 56% died. The median kidney and patient survivals were 12 and 32 months, respectively. LCDD+AL mainly affected patients 60 years of age or older. Thus, LCDD+AL could be caused by two pathological light chains produced by subclones stemming from one immunoglobulin light chain lambda or kappa rearrangement, with a distinct mutated complementary determining region.


Assuntos
Amiloidose , Nefropatias , Mieloma Múltiplo , Adulto , Idoso , Idoso de 80 Anos ou mais , Amiloidose/complicações , Amiloidose/diagnóstico , Amiloidose/patologia , Feminino , Humanos , Cadeias Leves de Imunoglobulina , Rim/patologia , Nefropatias/complicações , Nefropatias/etiologia , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/complicações , Proteômica
7.
Kidney Int Rep ; 6(5): 1225-1231, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34013100

RESUMO

Plasma and B cells dyscrasias that overproduce monoclonal immunoglobulin free light chains (FLCs) affect the kidney frequently in various ways. The hematologic dyscrasia responsible for the production of FLCs may or may not meet the criteria for cancer, such as multiple myeloma (MM) or lymphoma, or may remain subclinical. If there is overt malignancy, the accompanying kidney disorder is called myeloma- or lymphoma-associated. If the dyscrasia is subclinical, the associated kidney disorders are grouped as monoclonal gammopathy of renal significance. Glomeruli and tubules may both be involved. The proximal tubule disorders comprise a spectrum of interesting syndromes, which range in severity. This review focuses on the recent insights gained into the patterns and the mechanisms of proximal tubule toxicity of FLCs, including subtle transport disorders, such as proximal tubule acidosis, partial or complete Fanconi syndrome, or severe acute or chronic renal failure. Histologically, there may be crystal deposition in the proximal tubule cells, acute tubule injury, interstitial inflammation, fibrosis, and tubule atrophy. Specific structural alterations in the V domain of FLCs caused by somatic hypermutations are responsible for crystal formation as well as partial or complete Fanconi syndrome. Besides crystal formation, tubulointerstitial inflammation and proximal tubulopathy can be mediated by direct activation of inflammatory pathways through cytokines and Toll-like receptors due to cell stress responses induced by excessive FLC endocytosis into the proximal tubule cells. Therapy directed against the clonal source of the toxic light chain can prevent progression to more severe lesions and may help preserve kidney function.

8.
Blood Adv ; 5(6): 1770-1779, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755093

RESUMO

Since the early days of vaccination, targeted immunotherapy has gone through multiple conceptual changes and challenges. It now provides the most efficient and up-to-date strategies for either preventing or treating infections and cancer. Its most recent and successful weapons are autologous T cells carrying chimeric antigen receptors, engineered purposely for binding cancer-specific antigens and therefore used for so-called adoptive immunotherapy. We now face the merger of such achievements in cell therapy: using lymphocytes redirected on purpose to bind specific antigens and the  clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) revolution, which conferred genome-editing methodologies with both safety and efficacy. This unique affiliation will soon and considerably expand the scope of diseases susceptible to adoptive immunotherapy and of immune cells available for being reshaped as therapeutic tools, including B cells. Following the monumental success story of passive immunotherapy with monoclonal antibodies (mAbs), we are thus entering into a new era, where a combination of gene therapy/cell therapy will enable reprogramming of the patient's immune system and notably endow his B cells with the ability to produce therapeutic mAbs on their own.


Assuntos
Sistemas CRISPR-Cas , Receptores de Antígenos Quiméricos , Linfócitos B/metabolismo , Edição de Genes , Humanos , Imunoterapia , Receptores de Antígenos Quiméricos/metabolismo
9.
Am J Kidney Dis ; 78(3): 459-463, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33774080

RESUMO

There is increasing recognition of monoclonal gammopathy as a cause of proliferative glomerulonephritis (GN), including cases in which glomerular deposition of monoclonal immunoglobulin is demonstrated. Recently, proliferative GN with monoclonal immunoglobulin deposits (PGNMID) has incorporated a light chain variant of the disease (termed PGNMID-LC). Intriguingly, glomerular co-deposition of C3 is found in addition to monotypic light chain, implying complement activation via the alternative pathway (AP). We present a unique case of proliferative GN in a 42-year-old man who presented with nephrotic syndrome and was found to have κ light chain multiple myeloma. Immune staining of the glomerulus was positive only for κ light chain and C3, with the striking appearance of nonamyloid fibrils on electron microscopy. Following clonally targeted therapy for myeloma, the renal clinical abnormalities resolved completely. We present detailed molecular studies for light chain and complement and consider local mechanisms whereby monoclonal κ light chain fibrils may have triggered AP activation within the glomerulus.


Assuntos
Complemento C3/metabolismo , Glomerulonefrite Membranoproliferativa/diagnóstico , Imunoglobulina G/imunologia , Glomérulos Renais/ultraestrutura , Adulto , Biópsia , Fibrose/diagnóstico , Fibrose/imunologia , Fibrose/metabolismo , Glomerulonefrite Membranoproliferativa/imunologia , Glomerulonefrite Membranoproliferativa/metabolismo , Humanos , Imunoglobulina G/metabolismo , Glomérulos Renais/metabolismo , Masculino , Microscopia Eletrônica
11.
Blood ; 135(20): 1750-1758, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32243509

RESUMO

Polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome is a rare multisystem disease resulting from an underlying plasma cell (PC) dyscrasia. The pathophysiology of the disease remains unclear, but the role of the monoclonal immunoglobulin (Ig) light chain (LC) is strongly suspected because of the highly restrictive usage of 2 λ variable (V) domains (IGLV1-40 and IGLV1-44) and the general improvement of clinical manifestations after PC clone-targeted treatment. However, the diagnostic value of Ig LC sequencing, especially in the case of incomplete forms of the disease, remains to be determined. Using a sensitive high-throughput Ig repertoire sequencing on RNA (rapid amplification of cDNA ends-based repertoire sequencing [RACE-RepSeq]), we detected a λ LC monoclonal expansion in the bone marrow (BM) of 83% of patients with POEMS syndrome, including some in whom BM tests routinely performed to diagnose plasma cell dyscrasia failed to detect λ+ monoclonal PCs. Twenty-four (83%) of the 29 LC clonal sequences found were derived from the IGLV1-40 and IGLV1-44 germline genes, as well as 2 from the closely related IGLV1-36 gene, and all were associated with an IGLJ3*02 junction (J) gene, confirming the high restriction of VJ region usage in POEMS syndrome. RACE-RepSeq VJ full-length sequencing additionally revealed original mutational patterns, the strong specificity of which might crucially help establish or eliminate the diagnosis of POEMS syndrome in uncertain cases. Thus, RACE-RepSeq appears as a sensitive, rapid, and specific tool to detect low-abundance PC clones in BM and assign them to POEMS syndrome, with all the consequences for therapeutic options.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Cadeias lambda de Imunoglobulina/genética , Síndrome POEMS/genética , Biópsia , Medula Óssea/metabolismo , Medula Óssea/patologia , Mutação em Linhagem Germinativa , Humanos , Cadeias Leves de Imunoglobulina/análise , Cadeias Leves de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/análise , Linfonodos/metabolismo , Linfonodos/patologia , Técnicas de Diagnóstico Molecular/métodos , Síndrome POEMS/patologia , Análise de Sequência de Proteína
12.
Kidney Int ; 97(3): 589-601, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32001067

RESUMO

IgG (mainly IgG3) is the most commonly involved isotype in proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID). Here we describe the first series of PGNMID with deposition of monoclonal immunoglobulin light chain only (PGNMID-light chain). This multicenter cohort of 17 patients presented with nephritic or nephrotic syndrome with underlying hematologic conditions of monoclonal gammopathy of renal significance (71%) or multiple myeloma (29%). Monoclonal immunoglobulin was identified by serum and urine immunofixation in 65% and 73%, respectively, with abnormal serum free light chain in 83%, and a detectable bone marrow plasma cell clone in 88% of patients. Renal biopsy showed a membranoproliferative pattern in most patients. By immunofluorescence, deposits were restricted to glomeruli and composed of restricted light chain (kappa in 71%) and C3, with granular appearance and subendothelial, mesangial and subepithelial distribution by electron microscopy. Proteomic analysis in four cases of kappa PGNMID-light chain revealed spectra for kappa constant and variable domains, without evidence of Ig heavy chains; spectra for proteins of the alternative pathway of complement and terminal complex were detected in three. The classical pathway was not detected in three cases. After median follow up of 70 months, the renal response was dependent on a hematologic response and occurred in six of ten patients treated with plasma cell-directed chemotherapy but none of five patients receiving other therapies. Thus, PGNMID-light chain differs from PGNMID-IgG by higher frequency of a detectable pathogenic plasma cell clone. Hence, proper recognition is crucial as anti-myeloma agents may improve renal prognosis. Activation of an alternative pathway of complement by monoclonal immunoglobulin light chain likely plays a role in its pathogenesis.


Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Paraproteinemias , Anticorpos Monoclonais , Células Clonais , Glomerulonefrite Membranoproliferativa/diagnóstico , Humanos , Paraproteinemias/diagnóstico , Plasmócitos , Proteômica
13.
Am J Kidney Dis ; 74(2): 276-280, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30955945

RESUMO

Heavy chain amyloidosis and heavy chain deposition disease are the only known kidney diseases caused by the deposition of truncated immunoglobulin heavy chains. Fibrillary glomerulonephritis typically results from deposition of DNAJB9 (DnaJ heat shock protein family [Hsp40] member B9) and polytypic immunoglobulin G (IgG). We describe a patient with monoclonal gammopathy (IgG with λ light chain) who developed DNAJB9-negative fibrillary glomerulonephritis leading to end-stage kidney disease, with recurrence in 2 kidney allografts. Pre- and postmortem examination showed glomerular deposition of Congo red-negative fibrillar material that was determined to be immunoglobulin heavy chain. We propose the term "heavy chain fibrillary glomerulonephritis" to describe this lesion, which appears to be a rare kidney complication of monoclonal gammopathy. The diagnosis should be suspected when the kidney biopsy shows fibrillary glomerulonephritis with negative staining for immunoglobulin light chains and DNAJB9; the diagnosis can be confirmed using immunochemical and molecular studies.


Assuntos
Glomerulonefrite/imunologia , Imunoglobulina G , Cadeias Pesadas de Imunoglobulinas , Paraproteinemias/imunologia , Evolução Fatal , Glomerulonefrite/diagnóstico , Glomerulonefrite/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Paraproteinemias/diagnóstico , Paraproteinemias/terapia
14.
Cell Mol Immunol ; 16(10): 810-819, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30127381

RESUMO

The error-prone V(D)J recombination process generates considerable amounts of nonproductive immunoglobulin (Ig) pre-mRNAs. We recently demonstrated that aberrant Ig chains lacking variable (V) domains can be produced after nonsense-associated altered splicing (NAS) events. Remarkably, the expression of these truncated Ig polypeptides heightens endoplasmic reticulum stress and shortens plasma cell (PC) lifespan. Many questions remain regarding the molecular mechanisms underlying this new truncated Ig exclusion (TIE-) checkpoint and its restriction to the ultimate stage of B-cell differentiation. To address these issues, we evaluated the extent of NAS of Ig pre-mRNAs using an Ig heavy chain (IgH) knock-in model that allows for uncoupling of V exon skipping from TIE-induced apoptosis. We found high levels of V exon skipping in PCs compared with B cells, and this skipping was correlated with a biallelic boost in IgH transcription during PC differentiation. Chromatin analysis further revealed that the skipped V exon turned into a pseudo-intron. Finally, we showed that hypertranscription of Ig genes facilitated V exon skipping upon passive administration of splice-switching antisense oligonucleotides (ASOs). Thus, V exon skipping is coupled to transcription and increases as PC differentiation proceeds, likely explaining the late occurrence of the TIE-checkpoint and opening new avenues for ASO-mediated strategies in PC disorders.


Assuntos
Linfócitos B/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Plasmócitos/metabolismo , Alelos , Animais , Diferenciação Celular , Estresse do Retículo Endoplasmático , Éxons/genética , Variação Genética , Íntrons/genética , Camundongos , Camundongos Endogâmicos C57BL , Degradação do RNAm Mediada por Códon sem Sentido , Splicing de RNA , Recombinação V(D)J
15.
Blood ; 133(6): 576-587, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30578255

RESUMO

Monoclonal immunoglobulin deposition disease (MIDD) is a rare complication of B-cell clonal disorders, defined by Congo red negative-deposits of monoclonal light chain (LCDD), heavy chain (HCDD), or both (LHCDD). MIDD is a systemic disorder with prominent renal involvement, but little attention has been paid to the description of extrarenal manifestations. Moreover, mechanisms of pathogenic immunoglobulin deposition and factors associated with renal and patient survival are ill defined. We retrospectively studied a nationwide cohort of 255 patients, with biopsy-proven LCDD (n = 212) (including pure LCDD [n = 154], LCDD with cast nephropathy (CN) [n = 58]), HCDD (n = 23), or LHCDD (n = 20). Hematological diagnosis was monoclonal gammopathy of renal significance in 64% and symptomatic myeloma in 34%. Renal presentation was acute kidney injury in patients with LCCD and CN, and chronic glomerular disease in the other types, 35% of whom had symptomatic extrarenal (mostly hepatic and cardiac) involvement. Sequencing of 18 pathogenic LC showed high isoelectric point values of variable domain complementarity determining regions, possibly accounting for tissue deposition. Among 169 patients who received chemotherapy (bortezomib-based in 58%), 67% achieved serum free light chain (FLC) response, including very good partial response (VGPR) or above in 52%. Renal response occurred in 62 patients (36%), all of whom had achieved hematological response. FLC response ≥ VGPR and absence of severe interstitial fibrosis were independent predictors of renal response. This study highlights an unexpected frequency of extrarenal manifestations in MIDD. Rapid diagnosis and achievement of deep FLC response are key factors of prognosis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Nefropatias/patologia , Paraproteinemias/patologia , Idoso , Estudos de Coortes , Feminino , Seguimentos , Humanos , Nefropatias/tratamento farmacológico , Nefropatias/imunologia , Masculino , Pessoa de Meia-Idade , Paraproteinemias/tratamento farmacológico , Paraproteinemias/imunologia , Prognóstico , Taxa de Sobrevida
16.
Nat Rev Nephrol ; 14(4): 246-264, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29456245

RESUMO

The renal deposition of monoclonal immunoglobulins can cause severe renal complications in patients with B cell and plasma cell lymphoproliferative disorders. The overproduction of a structurally unique immunoglobulin can contribute to the abnormal propensity of monoclonal immunoglobulins to aggregate and deposit in specific organs. A wide range of renal diseases can occur in multiple myeloma or monoclonal gammopathy of renal significance, including tubular and glomerular disorders with organized or unorganized immunoglobulin deposits. The development of reliable experimental models is challenging owing to the inherent variability of immunoglobulins and the heterogeneity of the pathologies they produce. However, although imperfect, animal models are invaluable tools to understand the molecular pathogenesis of these diseases, and advances in creating genetically modified animals might provide novel approaches to evaluate innovative therapeutic interventions. We discuss the strategies employed to reproduce human monoclonal immunoglobulin-induced kidney lesions in animal models, and we highlight their advantages and shortcomings. We also discuss how these models have affected the management of these deposition diseases and might do so in the future. Finally, we discuss hypotheses that explain some limitations of the various models, and how these models might improve our understanding of other nephropathies without immunoglobulin involvement that have similar pathogenic mechanisms.


Assuntos
Anticorpos Monoclonais/imunologia , Modelos Animais de Doenças , Imunoglobulinas/imunologia , Nefropatias/imunologia , Paraproteinemias/imunologia , Animais , Camundongos Transgênicos
17.
Kidney Int ; 91(2): 423-434, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27773425

RESUMO

Randall-type heavy chain deposition disease (HCDD) is a rare disorder characterized by tissue deposition of a truncated monoclonal immunoglobulin heavy chain lacking the first constant domain. Pathophysiological mechanisms are unclear and management remains to be defined. Here we retrospectively studied 15 patients with biopsy-proven HCDD of whom 14 presented with stage 3 or higher chronic kidney disease, with nephrotic syndrome in 9. Renal lesions were characterized by nodular glomerulosclerosis, with linear peritubular and glomerular deposits of γ-heavy chain in 12 patients or α-heavy chain in 3 patients, without concurrent light chain staining. Only 2 patients had symptomatic myeloma. By serum protein electrophoresis/immunofixation, 13 patients had detectable monoclonal gammopathy. However, none of these techniques allowed detection of the nephrotoxic truncated heavy chain, which was achieved by immunoblot and/or bone marrow heavy chain sequencing in 14 of 15 patients. Serum-free kappa to lambda light chain ratio was abnormal in 11 of 11 patients so examined. Immunofluorescence studies of bone marrow plasma cells showed coexpression of the pathogenic heavy chain with light chain matching the abnormal serum-free light chain in all 3 tested patients. Heavy chain sequencing showed first constant domain deletion in 11 of 11 patients, with high isoelectric point values of the variable domain in 10 of 11 patients. All patients received chemotherapy, including bortezomib in 10 cases. Renal parameters improved in 11 patients who achieved a hematological response, as assessed by normalization of the free light chain ratio in 8 cases. Tissue deposition in HCDD relates to physicochemical peculiarities of both variable and constant heavy chain domains. Early diagnosis and treatment with bortezomib-based combinations appear important to preserve renal prognosis. Thus, monitoring of serum-free light chain is an indirect but useful method to evaluate the hematological response.


Assuntos
Doença das Cadeias Pesadas/imunologia , Doença das Cadeias Pesadas/patologia , Cadeias gama de Imunoglobulina/análise , Nefropatias/imunologia , Rim/imunologia , Rim/patologia , Idoso , Idoso de 80 Anos ou mais , Biópsia , Bortezomib/uso terapêutico , Quimioterapia Combinada , Feminino , Imunofluorescência , França , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Doença das Cadeias Pesadas/tratamento farmacológico , Doença das Cadeias Pesadas/genética , Humanos , Cadeias alfa de Imunoglobulina/análise , Cadeias gama de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/análise , Cadeias lambda de Imunoglobulina/análise , Rim/efeitos dos fármacos , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Masculino , Pessoa de Meia-Idade , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/imunologia , Síndrome Nefrótica/patologia , Paraproteinemias/tratamento farmacológico , Paraproteinemias/imunologia , Reação em Cadeia da Polimerase , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Estudos Retrospectivos , Resultado do Tratamento
18.
Nephrol Ther ; 12(3): 131-9, 2016 Jun.
Artigo em Francês | MEDLINE | ID: mdl-27117766

RESUMO

Monoclonal immunoglobulin (Ig) deposition disease (MIDD) is a rare complication of plasma cell disorders, defined by linear Congo red-negative deposits of monoclonal light chain (LCDD), heavy chain (HCDD) or both (LHCDD) along basement membranes. MIDD should be suspected in patients presenting with glomerular proteinuria and monoclonal gammopathy, but none of these criteria is necessary for the diagnosis although renal involvement is prominent. Since an abnormal serum κ/λ ratio is found in virtually all MIDD patients, including those with HCDD, serum free light chain assay should be included in the initial workup in patients older than 50 presenting with kidney disease. Bortezomib-based regimens are efficient and well tolerated, resulting in improvement in both renal and global survival, comparatively to historical series. High dose melphalan with autologous stem cell transplantation may be proposed as second line therapy in selected patients. The achievement of hematological response, based on the difference between involved and uninvolved serum free light chains (dFLC), is mandatory. In a recent series, post-treatment dFLC<40mg/L was the major predictive factor of renal response and was associated with improvement of both renal and global survival. In MIDD, bortezomib-based therapy is safe and efficient when introduced early after diagnosis. dFLC response is a favorable prognostic factor for renal survival.


Assuntos
Paraproteinemias/diagnóstico , Paraproteinemias/terapia , Árvores de Decisões , Humanos , Nefropatias/diagnóstico , Nefropatias/imunologia , Nefropatias/terapia , Paraproteinemias/complicações
19.
J Am Soc Nephrol ; 27(7): 2049-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26614382

RESUMO

Monoclonal gammopathies are frequently complicated by kidney lesions that increase the disease morbidity and mortality. In particular, abnormal Ig free light chains (LCs) may accumulate within epithelial cells, causing proximal tubule (PT) dysfunction and renal Fanconi syndrome (RFS). To investigate the mechanisms linking LC accumulation and PT dysfunction, we used transgenic mice overexpressing human control or RFS-associated κLCs (RFS-κLCs) and primary cultures of mouse PT cells exposed to low doses of corresponding human κLCs (25 µg/ml). Before the onset of renal failure, mice overexpressing RFS-κLCs showed PT dysfunction related to loss of apical transporters and receptors and increased PT cell proliferation rates associated with lysosomal accumulation of κLCs. Exposure of PT cells to RFS-κLCs resulted in κLC accumulation within enlarged and dysfunctional lysosomes, alteration of cellular dynamics, defective proteolysis and hydrolase maturation, and impaired lysosomal acidification. These changes were specific to the RFS-κLC variable (V) sequence, because they did not occur with control LCs or the same RFS-κLC carrying a single substitution (Ala30→Ser) in the V domain. The lysosomal alterations induced by RFS-κLCs were reflected in increased cell proliferation, decreased apical expression of endocytic receptors, and defective endocytosis. These results reveal that specific κLCs accumulate within lysosomes, altering lysosome dynamics and proteolytic function through defective acidification, thereby causing dedifferentiation and loss of reabsorptive capacity of PT cells. The characterization of these early events, which are similar to those encountered in congenital lysosomal disorders, provides a basis for the reported differential LC toxicity and new perspectives on LC-induced RFS.


Assuntos
Síndrome de Fanconi/etiologia , Cadeias Leves de Imunoglobulina , Lisossomos/fisiologia , Paraproteinemias/complicações , Animais , Cadeias Leves de Imunoglobulina/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos
20.
Blood ; 126(6): 757-65, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26113545

RESUMO

Randall-type heavy chain deposition disease (HCDD) is a rare disorder characterized by glomerular and peritubular amorphous deposits of a truncated monoclonal immunoglobulin heavy chain (HC) bearing a deletion of the first constant domain (CH1). We created a transgenic mouse model of HCDD using targeted insertion in the immunoglobulin κ locus of a human HC extracted from a HCDD patient. Our strategy allows the efficient expression of the human HC in mouse B and plasma cells, and conditional deletion of the CH1 domain reproduces the major event underlying HCDD. We show that the deletion of the CH1 domain dramatically reduced serum HC levels. Strikingly, even with very low serum level of truncated monoclonal HC, histologic studies revealed typical Randall-type renal lesions that were absent in mice expressing the complete human HC. Bortezomib-based treatment resulted in a strong decrease of renal deposits. We further demonstrated that this efficient response to proteasome inhibitors mostly relies on the presence of the isolated truncated HC that sensitizes plasma cells to bortezomib through an elevated unfolded protein response (UPR). This new transgenic model of HCDD efficiently recapitulates the pathophysiologic features of the disease and demonstrates that the renal damage in HCDD relies on the production of an isolated truncated HC, which, in the absence of a LC partner, displays a high propensity to aggregate even at very low concentration. It also brings new insights into the efficacy of proteasome inhibitor-based therapy in this pathology.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Doença das Cadeias Pesadas/tratamento farmacológico , Cadeias Pesadas de Imunoglobulinas/química , Nefropatias/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Pirazinas/farmacologia , Sequência de Aminoácidos , Animais , Bortezomib , Modelos Animais de Doenças , Expressão Gênica , Loci Gênicos , Doença das Cadeias Pesadas/genética , Doença das Cadeias Pesadas/imunologia , Doença das Cadeias Pesadas/patologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Nefropatias/genética , Nefropatias/imunologia , Nefropatias/patologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/imunologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Plasmócitos/metabolismo , Plasmócitos/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/patologia , Estrutura Terciária de Proteína , Deleção de Sequência , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA