Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790652

RESUMO

Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.

2.
Cells ; 11(18)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36139485

RESUMO

The altered crosstalk between mitochondrial dysfunction, intracellular Ca2+ homeostasis, and oxidative stress has a central role in the dopaminergic neurodegeneration. In the present study, we investigated the hypothesis that pharmacological strategies able to improve mitochondrial functions might prevent neuronal dysfunction in in vitro models of Parkinson's disease. To this aim, the attention was focused on the amino acid ornithine due to its ability to cross the blood-brain barrier, to selectively reach and penetrate the mitochondria through the ornithine transporter 1, and to control mitochondrial function. To pursue this issue, experiments were performed in human neuroblastoma cells SH-SY5Y treated with rotenone and 6-hydroxydopamine to investigate the pharmacological profile of the compound L-Ornithine-L-Aspartate (LOLA) as a new potential therapeutic strategy to prevent dopaminergic neurons' death. In these models, confocal microscopy experiments with fluorescent dyes measuring mitochondrial calcium content, mitochondrial membrane potential, and mitochondrial ROS production, demonstrated that LOLA improved mitochondrial functions. Moreover, by increasing NCXs expression and activity, LOLA also reduced cytosolic [Ca2+] thanks to its ability to modulate NO production. Collectively, these results indicate that LOLA, by interfering with those mitochondrial mechanisms related to ROS and RNS production, promotes mitochondrial functional recovery, thus confirming the tight relationship existing between cytosolic ionic homeostasis and cellular metabolism depending on the type of insult applied.


Assuntos
Neuroblastoma , Doença de Parkinson , Ácido Aspártico , Cálcio/metabolismo , Dipeptídeos , Neurônios Dopaminérgicos/metabolismo , Corantes Fluorescentes/metabolismo , Homeostase , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Ornitina/metabolismo , Oxidopamina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona
3.
J Transl Med ; 20(1): 290, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761360

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive disease characterized by high risk of relapse and development of resistance to different chemotherapy agents. Several targeted therapies have been investigated in TNBC with modest results in clinical trials. Among these, PI3K/AKT inhibitors have been evaluated in addition to standard therapies, yielding conflicting results and making attempts on elucidating inherent mechanisms of resistance of great interest. Increasing evidences suggest that PI3K/AKT inhibitors can induce autophagy in different cancers. Autophagy represents a supposed mechanism of drug-resistance in aggressive tumors, like TNBC. We, therefore, investigated if two PI3K/AKT inhibitors, ipatasertib and taselisib, could induce autophagy in breast cancer models, and whether chloroquine (CQ), a well known autophagy inhibitor, could potentiate ipatasertib and taselisib anti-cancer effect in combination with conventional chemotherapy. METHODS: The induction of autophagy after ipatasertib and taselisib treatment was evaluated in MDAMB231, MDAM468, MCF7, SKBR3 and MDAB361 breast cancer cell lines by assaying LC3-I conversion to LC3-II through immunoblotting and immunofluorescence. Other autophagy-markers as p62/SQSTM1 and ATG5 were evaluated by immunoblotting. Synergistic antiproliferative effect of double and triple combinations of ipatasertib/taselisib plus CQ and/or paclitaxel were evaluated by SRB assay and clonogenic assay. Anti-apoptotic effect of double combination of ipatasertib/taselisib plus CQ was evaluated by increased cleaved-PARP by immunoblot and by Annexin V- flow cytometric analysis. In vivo experiments were performed on xenograft model of MDAMB231 in NOD/SCID mice. RESULTS: Our results suggested that ipatasertib and taselisib induce increased autophagy signaling in different breast cancer models. This effect was particularly evident in PI3K/AKT resistant TNBC cells, where the inhibition of autophagy by CQ potentiates the therapeutic effect of PI3K/AKT inhibitors in vitro and in vivo TNBC models, synergizing with taxane-based chemotherapy. CONCLUSION: These data suggest that inhibition of authophagy with CQ could overcome mechanism of drug resistance to PI3K/AKT inhibitors plus paclitaxel in TNBC making the evaluation of such combinations in clinical trials warranted.


Assuntos
Cloroquina , Resistencia a Medicamentos Antineoplásicos , Inibidores de Fosfoinositídeo-3 Quinase , Neoplasias de Mama Triplo Negativas , Animais , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
4.
Mol Ther ; 23(3): 465-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582710

RESUMO

The plasma membrane Na(+)/Ca(2+) exchanger (NCX) is a high-capacity ionic transporter that exchanges 3Na(+) ions for 1Ca(2+) ion. The first 20 amino acids of the f-loop, named exchanger inhibitory peptide (XIP(NCX1)), represent an autoinhibitory region involved in the Na(+)-dependent inactivation of the exchanger. Previous research has shown that an exogenous peptide having the same amino acid sequence as the XIP(NCX1) region exerts an inhibitory effect on NCX activity. In this study, we identified another regulatory peptide, named P1, which corresponds to the 562-688aa region of the exchanger. Patch-clamp analysis revealed that P1 increased the activity of the exchanger, whereas the XIP inhibited it. Furthermore, P1 colocalized with NCX1 thus suggesting a direct binding interaction. In addition, site-directed mutagenesis experiments revealed that the binding and the stimulatory effect of P1 requires a functional XIP(NCX1) domain on NCX1 thereby suggesting that P1 increases the exchanger activity by counteracting the action of this autoinhibitory sequence. Taken together, these results open a new strategy for developing peptidomimetic compounds that, by mimicking the functional pharmacophore of P1, might increase NCX1 activity and thus exert a therapeutic action in those diseases in which an increase in NCX1 activity might be helpful.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Peptídeos/farmacologia , Trocador de Sódio e Cálcio/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Cricetinae , Expressão Gênica , Transporte de Íons , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/agonistas , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genética
5.
J Biol Chem ; 290(3): 1319-31, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25416782

RESUMO

NGF induces neuronal differentiation by modulating [Ca(2+)]i. However, the role of the three isoforms of the main Ca(2+)-extruding system, the Na(+)/Ca(2+) exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca(2+)]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca(2+) content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na(+) currents and 1,3-benzenedicarboxylic acid, 4,4'-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na(+)]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca(2+) content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca(2+)]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca(2+) content and PI3K signaling.


Assuntos
Encéfalo/embriologia , Cálcio/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Diferenciação Celular , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Homeostase , Mutação , Neuritos/metabolismo , Células PC12 , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Sódio/metabolismo
6.
Stroke ; 42(3): 754-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21293012

RESUMO

BACKGROUND AND PURPOSE: The sodium-calcium exchanger-1 (NCX1) represents a key mediator for maintaining [Na(+)](i) and [Ca(2+)](i) homeostasis. Although changes in NCX1 protein and transcript expression have been detected during stroke, its transcriptional regulation is still unknown. Thus far, however, there is evidence that hypoxia-inducible factor-1 (HIF-1) is a nuclear factor required for transcriptional activation of several genes implicated in stroke. The main objective of this study was to investigate whether NCX1 gene might be a novel target of HIF-1 in the brain. METHODS: Here we report that: (1) in neuronal cells, NCX1 increased expression after oxygen and glucose deprivation or cobalt-induced HIF-1 activation was prevented by silencing HIF-1; (2) the brain NCX1 promoter cloned upstream of the firefly-luciferase gene contained 2 regions of HIF-1 target genes called hypoxia-responsive elements that are sensitive to oxygen and glucose deprivation or cobalt chloride; (3) HIF-1 specifically bound hypoxia-responsive elements on brain NCX1, as demonstrated by band-shift and chromatin immunoprecipitation assays; (4) HIF-1α silencing prevented NCX1 upregulation and neuroprotection induced by ischemic preconditioning; and (5) NCX1 silencing partially reverted the preconditioning-induced neuroprotection in rats. CONCLUSIONS: NCX1 gene is a novel HIF-1 target, and HIF-1 exerts its prosurvival role through NCX1 upregulation during brain preconditioning.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Marcação de Genes/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Precondicionamento Isquêmico/métodos , Trocador de Sódio e Cálcio/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ataque Isquêmico Transitório/genética , Ataque Isquêmico Transitório/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Trocador de Sódio e Cálcio/biossíntese , Trocador de Sódio e Cálcio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA