Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963199

RESUMO

Elevated expression of heme oxygenase-1 (HO-1, encoded by HMOX1) is observed in various types of tumors. Hence, it is suggested that HO-1 may serve as a potential target in anticancer therapies. A novel approach to inhibit HO-1 is related to the synthetic lethality of this enzyme and fumarate hydratase (FH). In the current study, we aimed to validate the effect of genetic and pharmacological inhibition of HO-1 in cells isolated from patients suffering from hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-an inherited cancer syndrome, caused by FH deficiency. Initially, we confirmed that UOK 262, UOK 268, and NCCFH1 cell lines are characterized by non-active FH enzyme, high expression of Nrf2 transcription factor-regulated genes, including HMOX1 and attenuated oxidative phosphorylation. Later, we demonstrated that shRNA-mediated genetic inhibition of HMOX1 resulted in diminished viability and proliferation of cancer cells. Chemical inhibition of HO activity using commercially available inhibitors, zinc and tin metalloporphyrins as well as recently described new imidazole-based compounds, especially SLV-11199, led to decreased cancer cell viability and clonogenic potential. In conclusion, the current study points out the possible relevance of HO-1 inhibition as a potential anti-cancer treatment in HLRCC. However, further studies revealing the molecular mechanisms are still needed.


Assuntos
Fumarato Hidratase/genética , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Leiomiomatose/genética , Leiomiomatose/terapia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Uterinas/genética , Neoplasias Uterinas/terapia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fumarato Hidratase/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Leiomiomatose/tratamento farmacológico , Leiomiomatose/metabolismo , Metaloporfirinas/farmacologia , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Síndromes Neoplásicas Hereditárias/metabolismo , RNA Interferente Pequeno/farmacologia , Terapêutica com RNAi , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo
2.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276659

RESUMO

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos
3.
JAMA Neurol ; 72(1): 106-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25420100

RESUMO

IMPORTANCE: Progressive external ophthalmoplegia (PEO) is a common feature in adults with mitochondrial (mt) DNA maintenance disorders associated with somatic mtDNA deletions in muscle, yet the causal genetic defect in many patients remains undetermined. OBSERVATIONS: Whole-exome sequencing identified a novel, heterozygous p.(Gly671Trp) mutation in the AFG3L2 gene encoding an mt protease--previously associated with dominant spinocerebellar ataxia type 28 disease--in a patient with indolent ataxia and PEO. Targeted analysis of a larger, genetically undetermined cohort of patients with PEO with suspected mtDNA maintenance abnormalities identified a second unrelated patient with a similar phenotype and a novel, heterozygous p.(Tyr689His) AFG3L2 mutation. Analysis of patient fibroblasts revealed mt fragmentation and decreased AFG3L2 transcript expression. Western blotting of patient fibroblast and muscle showed decreased AFG3L2 protein levels. CONCLUSIONS AND RELEVANCE: Our observations suggest that AFG3L2 mutations are another important cause, albeit rare, of a late-onset ataxic PEO phenotype due to a disturbance of mtDNA maintenance.


Assuntos
Proteases Dependentes de ATP/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Degenerações Espinocerebelares/genética , ATPases Associadas a Diversas Atividades Celulares , Idoso , Animais , Estudos de Casos e Controles , Evolução Molecular , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Estudo de Associação Genômica Ampla , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Oftalmoplegia Externa Progressiva Crônica/genética , Ataxias Espinocerebelares/congênito , Degenerações Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA