Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 98: 104873, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38040541

RESUMO

BACKGROUND: Accessible prebiotic foods hold strong potential to jointly target gut health and metabolic health in high-risk patients. The BE GONE trial targeted the gut microbiota of obese surveillance patients with a history of colorectal neoplasia through a straightforward bean intervention. METHODS: This low-risk, non-invasive dietary intervention trial was conducted at MD Anderson Cancer Center (Houston, TX, USA). Following a 4-week equilibration, patients were randomized to continue their usual diet without beans (control) or to add a daily cup of study beans to their usual diet (intervention) with immediate crossover at 8-weeks. Stool and fasting blood were collected every 4 weeks to assess the primary outcome of intra and inter-individual changes in the gut microbiome and in circulating markers and metabolites within 8 weeks. This study was registered on ClinicalTrials.gov as NCT02843425, recruitment is complete and long-term follow-up continues. FINDINGS: Of the 55 patients randomized by intervention sequence, 87% completed the 16-week trial, demonstrating an increase on-intervention in diversity [n = 48; linear mixed effect and 95% CI for inverse Simpson index: 0.16 (0.02, 0.30); p = 0.02] and shifts in multiple bacteria indicative of prebiotic efficacy, including increased Faecalibacterium, Eubacterium and Bifidobacterium (all p < 0.05). The circulating metabolome showed parallel shifts in nutrient and microbiome-derived metabolites, including increased pipecolic acid and decreased indole (all p < 0.002) that regressed upon returning to the usual diet. No significant changes were observed in circulating lipoproteins within 8 weeks; however, proteomic biomarkers of intestinal and systemic inflammatory response, fibroblast-growth factor-19 increased, and interleukin-10 receptor-α decreased (p = 0.01). INTERPRETATION: These findings underscore the prebiotic and potential therapeutic role of beans to enhance the gut microbiome and to regulate host markers associated with metabolic obesity and colorectal cancer, while further emphasizing the need for consistent and sustainable dietary adjustments in high-risk patients. FUNDING: This study was funded by the American Cancer Society.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Humanos , Proteômica , Obesidade/microbiologia , Inflamação
2.
BMC Cancer ; 19(1): 1233, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852462

RESUMO

BACKGROUND: Mouse and human studies support the promise of dry beans to improve metabolic health and to lower cancer risk. In overweight/obese patients with a history of colorectal polyps or cancer, the Beans to Enrich the Gut microbiome vs. Obesity's Negative Effects (BE GONE) trial will test whether and how an increase in the consumption of pre-cooked, canned dry beans within the context of usual diet and lifestyle can enhance the gut landscape to improve metabolic health and reduce cancer risk. METHODS/DESIGN: This randomized crossover trial is designed to characterize changes in (1) host markers spanning lipid metabolism, inflammation, and obesity-related cancer risk; (2) compositional and functional profiles of the fecal microbiome; and (3) host and microbial metabolites. With each subject serving as their own control, the trial will compare the participant's usual diet with (intervention) and without (control) dry beans. Canned, pre-cooked dry beans are provided to participants and the usual diet continually assessed and monitored. Following a 4-week run-in and equilibration period, each participant provides a total of 5 fasting blood and 6 stool samples over a total period of 16 weeks. The intervention consists of a 2-week ramp-up of dry bean intake to 1 cup/d, which is then continued for an additional 6 weeks. Intra- and inter-individual outcomes are assessed across each crossover period with consideration of the joint or modifying effects of the usual diet and baseline microbiome. DISCUSSION: The BE GONE trial is evaluating a scalable dietary prevention strategy targeting the gut microbiome of high-risk patients to mitigate the metabolic and inflammatory effects of adiposity that influence colorectal cancer risk, recurrence, and survival. The overarching scientific goal is to further elucidate interactions between diet, the gut microbiome, and host metabolism. Improved understanding of the diet-microbiota interplay and effective means to target these relationships will be key to the future of clinical and public health approaches to cancer and other major diet- and obesity-related diseases. TRIAL REGISTRATION: This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT02843425. First posted July 25, 2016; last verified January 25, 2019.


Assuntos
Neoplasias do Colo/dietoterapia , Pólipos do Colo/dietoterapia , Microbioma Gastrointestinal , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Neoplasias do Colo/prevenção & controle , Pólipos do Colo/microbiologia , Pólipos do Colo/patologia , Pólipos do Colo/prevenção & controle , Estudos Cross-Over , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Obesidade/microbiologia , Sobrepeso/microbiologia , Intervalo Livre de Progressão , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA