Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Adv Protein Chem Struct Biol ; 130: 375-397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35534113

RESUMO

Breast cancer type 1 susceptibility protein (BRCA1) is closely related to the BRCA2 (breast cancer type 2 susceptibility protein) and BARD1 (BRCA1-associated RING domain-1) proteins. The homodimers were formed through their RING fingers; however they form more compact heterodimers preferentially, influencing BRCA1 residues 1-109 and BARD1 residues 26-119. We implemented an integrative computational pipeline to screen all the mutations in BRCA1 and identify the most significant mutations influencing the Protein-Protein Interactions (PPI) in the BRCA1-BARD1 protein complex. The amino acids involved in the PPI regions were identified from the PDBsum database with the PDB ID: 1JM7. We screened 2118 missense mutations in BRCA1 and none in BARD1 for pathogenicity and stability and analyzed the amino acid sequences for conserved residues. We identified the most significant mutations from these screenings as V11G, M18K, L22S, and T97R positioned in the PPI regions of the BRCA1-BARD1 protein complex. We further performed protein-protein docking using the ZDOCK server. The native protein-protein complex showed the highest binding score of 2118.613, and the V11G mutant protein complex showed the least binding score of 1992.949. The other three mutation protein complexes had binding scores between the native and V11G protein complexes. Finally, a molecular dynamics simulation study using GROMACS was performed to comprehend changes in the BRCA1-BARD1 complex's binding pattern due to the mutation. From the analysis, we observed the highest deviation with lowest compactness and a decrease in the intramolecular h-bonds in the BRCA1-BARD1 protein complex with the V11G mutation compared to the native complex or the complexes with other mutations.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Sequência de Aminoácidos , Proteína BRCA1/química , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Mutação , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
ChemMedChem ; 16(14): 2195-2205, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33759400

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising therapeutic target in cancer immunotherapy and neurological disease. Thus, searching for highly active inhibitors for use in human cancers is now a focus of widespread research and development efforts. In this study, we report the structure-based design of 2-(5-imidazolyl)indole derivatives, a series of novel IDO1 inhibitors which have been designed and synthesized based on our previous study using N1-substituted 5-indoleimidazoles. Among these, we have identified one with a strong IDO1 inhibitory activity (IC50 =0.16 µM, EC50 =0.3 µM). Structural-activity relationship (SAR) and computational docking simulations suggest that a hydroxyl group favorably interacts with a proximal Ser167 residue in Pocket A, improving IDO1 inhibitory potency. The brain penetrance of potent compounds was estimated by calculation of the Blood Brain Barrier (BBB) Score and Brain Exposure Efficiency (BEE) Score. Many compounds had favorable scores and the two most promising compounds were advanced to a pharmacokinetic study which demonstrated that both compounds were brain penetrant. We have thus discovered a flexible scaffold for brain penetrant IDO1 inhibitors, exemplified by several potent, brain penetrant, agents. With this promising scaffold, we provide herein a basis for further development of brain penetrant IDO1 inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
4.
Viruses ; 13(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673529

RESUMO

The immunological findings from autopsies, biopsies, and various studies in COVID-19 patients show that the major cause of morbidity and mortality in COVID-19 is excess immune response resulting in hyper-inflammation. With the objective to review various mechanisms of excess immune response in adult COVID-19 patients, Pubmed was searched for free full articles not related to therapeutics or co-morbid sub-groups, published in English until 27.10.2020, irrespective of type of article, country, or region. Joanna Briggs Institute's design-specific checklists were used to assess the risk of bias. Out of 122 records screened for eligibility, 42 articles were included in the final review. The review found that eventually, most mechanisms result in cytokine excess and up-regulation of Nuclear Factor-κB (NF-κB) signaling as a common pathway of excess immune response. Molecules blocking NF-κB or targeting downstream effectors like Tumour Necrosis Factor α (TNFα) are either undergoing clinical trials or lack specificity and cause unwanted side effects. Neutralization of upstream histamine by histamine-conjugated normal human immunoglobulin has been demonstrated to inhibit the nuclear translocation of NF-κB, thereby preventing the release of pro-inflammatory cytokines Interleukin (IL) 1ß, TNF-α, and IL-6 and IL-10 in a safer manner. The authors recommend repositioning it in COVID-19.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Histamina/administração & dosagem , Imunoglobulinas/administração & dosagem , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Síndrome da Liberação de Citocina/virologia , Bases de Dados Factuais , Regulação para Baixo/efeitos dos fármacos , Reposicionamento de Medicamentos , Humanos , Imunidade , Produção de Droga sem Interesse Comercial , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Environ Sci Technol ; 54(10): 6094-6103, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32315523

RESUMO

Millions of people are exposed to toxic levels of dissolved arsenic in groundwater used for drinking. Iron electrocoagulation (FeEC) has been demonstrated as an effective technology to remove arsenic at an affordable price. However, FeEC requires long operating times (∼hours) to remove dissolved arsenic due to inherent kinetics limitations. Air cathode Assisted Iron Electrocoagulation (ACAIE) overcomes this limitation by cathodically generating H2O2 in situ. In ACAIE operation, rapid oxidation of Fe(II) and complete oxidation and removal of As(III) are achieved. We compare FeEC and ACAIE for removing As(III) from an initial concentration of 1464 µg/L, aiming for a final concentration of less than 4 µg/L. We demonstrate that at short electrolysis times (0.5 min), i.e., high charge dosage rates (1200 C/L/min), ACAIE consistently outperformed FeEC in bringing arsenic levels to less than WHO-MCL of 10 µg/L. Using XRD and XAS data, we conclusively show that poor arsenic removal in FeEC arises from incomplete As(III) oxidation, ineffective Fe(II) oxidation and the formation of Fe(II-III) (hydr)oxides at short electrolysis times (<20 min). Finally, we report successful ACAIE performance (retention time 19 s) in removing dissolved arsenic from contaminated groundwater in rural California.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Eletrocoagulação , Peróxido de Hidrogênio , Ferro , Oxirredução
6.
Water Res ; 175: 115668, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32163769

RESUMO

Iron electrocoagulation (Fe-EC) is an effective technology to remove arsenic (As) from groundwater used for drinking. A commonly noted limitation of Fe-EC is fouling or passivation of electrode surfaces via rust accumulation over long-term use. In this study, we examined the effect of removing electrode surface layers on the performance of a large-scale (10,000 L/d capacity) Fe-EC plant in West Bengal, India. We also characterized the layers formed on the electrodes in active use for over 2 years at this plant. The electrode surfaces developed three distinct horizontal sections of layers that consisted of different minerals: calcite, Fe(III) precipitates and magnetite near the top, magnetite in the middle, and Fe(III) precipitates and magnetite near the bottom. The interior of all surface layers adjacent to the Fe(0) metal was dominated by magnetite. We determined the impact of surface layer removal by mechanical abrasion on Fe-EC performance by measuring solution composition (As, Fe, P, Si, Mn, Ca, pH, DO) and electrochemical parameters (total cell voltage and electrode interface potentials) during electrolysis. After electrode cleaning, the Fe concentration in the bulk solution increased substantially from 15.2 to 41.5 mg/L. This higher Fe concentration led to increased removal of a number of solutes. For As, the concentration reached below the 10 µg/L WHO MCL more rapidly and with less total Fe consumed (i.e. less electrical energy) after cleaning (128.4 µg/L As removed per kWh) compared to before cleaning (72.9 µg/L As removed per kWh). Similarly, the removal of P and Si improved after cleaning by 0.3 mg/L/kWh and 1.1 mg/L/kWh, respectively. Our results show that mechanically removing the surface layers that accumulate on electrodes over extended periods of Fe-EC operation can restore Fe-EC system efficiency (concentration of solute removed/kWh delivered). Since Fe release into the bulk solution substantially increased upon electrode cleaning, our results also suggest that routine electrode maintenance can ensure robust and reliable Fe-EC performance over year-long timescales.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Eletrocoagulação , Eletrodos , Índia , Ferro
7.
Comput Biol Med ; 115: 103513, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698236

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer among females worldwide, and among the BC-associated mutations in various proteins, mutations in the RAC-alpha serine/threonine-protein kinase (AKT1) remain the most dominant. We thus attempted to understand the potential molecular pathogenicity profile of the mutations in AKT1 using a comprehensive computational protocol involving analyses of biochemistry-disruption and destabilizing properties and conservation. Our predictions revealed that E17K, R67W, V164G, E319G, R391G, D32Y, L52H, L52R, and W80R were the most pathogenic mutations. In addition, the change of glutamate to lysine at position 17 of AKT1 (E17K) was found to be highly predominant. An extensive two-step molecular dynamics (simple and complex) simulation (MDS) using GROMACS (GROningen MAchine for Chemical Simulations) was then initiated to analyze and understand the structural impact of the E17K mutation on the function of AKT1. The simple MDS analysis revealed that the E17K mutation decreases the compactness and intramolecular hydrogen bonds of the protein. We also performed a virtual screening analysis with 19 AKT inhibitors obtained from the Selleck Chemicals website those satisfied the Lipinski rule of 5. Among these 19 compounds, Akti-1/2 exhibited the best binding affinity with both native AKT1 and the E17K mutant. The molecular interaction study also revealed that the co-crystallized AKT1 inhibitor N-(4-(5-(3-acetamidophenyl)-2-(2-aminopyridin-3-yl)-3H-imidazo [4,5-b]pyridin-3-yl)benzyl)-3-fluorobenzamide (12j) exhibited a better interaction with native AKT1 compared with the E17K mutant AKT1 protein, whereas, Akti-1/2 exhibited the opposite effects, i.e., a better interaction with the E17K mutant AKT1 than the native AKT1. These findings from the interaction analysis were further supported by the complex MDS, which measured the compactness and intermolecular hydrogen bonds of the proteins. The results obtained in this study suggest that Akti-1/2 might be a better inhibitor for the treatment of BC caused by the E17K mutation in AKT1.


Assuntos
Neoplasias da Mama , Simulação de Acoplamento Molecular , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-akt , Substituição de Aminoácidos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Sci Total Environ ; 677: 307-314, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31059874

RESUMO

Corrosion is a major obstacle to a safe implementation of geotechnical applications. Using a novel approach that includes vertical scanning interferometry (VSI) and electrochemical impedance spectroscopy (EIS) we discuss time-dependent carbon steel corrosion and film formation at geothermally relevant temperatures (80-160 °C) in CO2-saturated mildly acidic NaCl brine. Iron dissolution kinetics follows a logarithmic rate at 80 and 160 °C and a linear rate at 120 °C. At 80 °C, high initial corrosion rates (first 24 h) generate H2 at a minimum rate of 12 µmol h-1 cm-2 and lead to the formation of a continuous ~100 µm thick porous corrosion film. It exhibits a duplex structure with a crystalline outer FeCO3 layer and an inner layer composed of a skeletal network of Fe3C impregnated with FeCO3. Being an electrical conductor we hypothesize the Fe3C to strongly enhance corrosion rates by providing additional cathodic sites. Pseudo-passivity due to an anodic film-forming reaction (presumably Fe-oxide) was observed at 120 and 160 °C, soon followed by the initiation of pitting at 120 °C. Steady-state corrosion rates at 160 °C are at least one order of magnitude lower than for 120 °C. Our experimental approach demonstrated potential for general applicability in studying corrosion-related phenomena.

9.
Adv Protein Chem Struct Biol ; 114: 341-407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30635085

RESUMO

Fabry's disease (FD) is the second most commonly occurring lysosomal storage disorders (LSDs). The mutations in α-galactosidase A (GLA) protein were widely found to be causative for the Fabry's disease. These mutations result in alternate splicing methods that affect the stability and function of the protein. The mutations near the active site of the protein results in protein misfolding. In this study, we have retrieved the missense mutation data from the three public databases (NCBI, UniProt, and HGMD). We used multiple in silico tools to predict the pathogenicity and stability of these mutations. Mutations in the active sites (D92Y, C142Y, D170V, and D266N) of the protein were screened for the phenotyping analysis using SNPeffect 4.0. Mutant D92Y was predicted to increase the amyloid propensity as well as severely reduce the protein stability and the remaining mutations showed no significant results by SNPeffect 4.0. Protein dynamics simulations (PDS) were performed to understand the behavior of the proteins due to the mutations. The simulation results showed that the D92Y mutant was more severe (higher deviation, loss of intramolecular hydrogen bonds, and lower compactness) than the other protein mutants (C142Y, D170V, and D266N). Further, the action of pharmacological chaperone 1-deoxygalactonojirimycin (DGJ) over the severe mutation was studied using the molecular docking analysis. Chaperone DGJ, an iminosugar plays a convincing role in repairing the misfolded protein and helps the protein to achieve its normal function. From the molecular docking analysis, we observed that both the native protein and protein with D92Y mutation followed similar interaction patterns. Further, the docked complexes (native-DGJ and mutant-DGJ) were subjected to PDS analysis. From the simulation analysis, we observed that DGJ had shown the better effect on the protein with the D92Y mutation. This elucidates that DGJ can still be used as a promising chaperone to treat the FD caused by mutations of GLA protein.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Chaperonas Moleculares/farmacologia , alfa-Galactosidase/antagonistas & inibidores , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Domínio Catalítico/efeitos dos fármacos , Doença de Fabry/genética , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Mutação , Fenótipo , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-31921802

RESUMO

Background and aims: Ovarian cancer (OC) is the seventh most commonly detected cancer among women. This study aimed to map the hub and core genes and potential pathways that might be involved in the molecular pathogenesis of OC. Methods: In the present work, we analyzed a microarray dataset (GSE126519) from the Gene Expression Omnibus (GEO) database and used the GEO2R tool to screen OC cells and ovarian SINE-resistant cancer cells for differentially expressed genes (DEGs). For the functional annotation of the DEGs, we conducted Gene Ontology (GO) and pathway enrichment analyses (KEGG) using the DAVID v6.8 online server and GenoGo Metacore™, Cortellis Solution software. Protein-protein interaction (PPI) networks were constructed using the STRING database, and Cytoscape software was used for visualization. The survival analysis was performed using the online platform GEPIA2 to determine the prognostic value of the expression of hub genes in cell lines from OC patients. Results: We identified a total of 809 upregulated and 700 downregulated DEGs. GO analysis revealed that the genes with statistically significant differences in expression were mainly associated with biological processes involved in the cell cycle, the mitotic cell cycle, mitotic nuclear division, organ morphogenesis, cell development, and cell morphogenesis. By using the Analyze Networks (AN) algorithm in GeneGo, we identified the most relevant biological networks involving DEGs that were mainly enriched in the cell cycle (in metaphase checkpoints) and revealed the role of APC in cell cycle regulation pathways. We found 10 hub genes and four core genes (FZD6, FZD8, CDK2, and RBBP8) that are strongly linked to OC. Conclusion: This study sheds light on the molecular pathogenesis of OC and is expected to provide potential molecular biomarkers that are beneficial for the treatment and clinical molecular diagnosis of OC.

11.
Metab Brain Dis ; 33(6): 1823-1834, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30006696

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by the mutations in survival motor neuron 1 gene (SMN1). The molecular pathology of missense mutations in SMN1 is not thoroughly investigated so far. Therefore, we collected all missense mutations in the SMN1 protein, using all possible search terms, from three databases (PubMed, PMC and Google Scholar). All missense mutations were subjected to in silico pathogenicity, conservation, and stability analysis tools. We used statistical analysis as a QC measure for validating the specificity and accuracy of these tools. PolyPhen-2 demonstrated the highest specificity and accuracy. While PolyPhen-1 showed the highest sensitivity; overall, PolyPhen2 showed better measures in comparison to other in silico tools. Three mutations (D44V, Y272C, and Y277C) were identified as the most pathogenic and destabilizing. Further, we compared the physiochemical properties of the native and the mutant amino acids and observed loss of H-bonds and aromatic stacking upon the cysteine to tyrosine substitution, which led to the loss of aromatic rings and may reduce protein stability. The three mutations were further subjected to Molecular Dynamics Simulation (MDS) analysis using GROMACS to understand the structural changes. The Y272C and Y277C mutants exhibited maximum deviation pattern from the native protein as compared to D44V mutant. Further MDS analysis predicted changes in the stability that may have been contributed due to the loss of hydrogen bonds as observed in intramolecular hydrogen bond analysis and physiochemical analysis. A loss of function/structural impact was found to be severe in the case of Y272C and Y277C mutants in comparison to D44V mutation. Correlating the results from in silico predictions, physiochemical analysis, and MDS, we were able to observe a loss of stability in all the three mutants. This combinatorial approach could serve as a platform for variant interpretation and drug design for spinal muscular dystrophy resulting from missense mutations.


Assuntos
Enzimas Reparadoras do DNA/genética , Atrofia Muscular Espinal/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Bases de Dados Factuais , Exodesoxirribonucleases , Humanos , Simulação de Dinâmica Molecular
12.
Metab Brain Dis ; 33(5): 1443-1457, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29804243

RESUMO

The NF1 gene encodes for neurofibromin protein, which is ubiquitously expressed, but most highly in the central nervous system. Non-synonymous SNPs (nsSNPs) in the NF1 gene were found to be associated with Neurofibromatosis Type 1 disease, which is characterized by the growth of tumors along nerves in the skin, brain, and other parts of the body. In this study, we used several in silico predictions tools to analyze 16 nsSNPs in the RAS-GAP domain of neurofibromin, the K1444N (K1423N) mutation was predicted as the most pathogenic. The comparative molecular dynamic simulation (MDS; 50 ns) between the wild type and the K1444N (K1423N) mutant suggested a significant change in the electrostatic potential. In addition, the RMSD, RMSF, Rg, hydrogen bonds, and PCA analysis confirmed the loss of flexibility and increase in compactness of the mutant protein. Further, SASA analysis revealed exchange between hydrophobic and hydrophilic residues from the core of the RAS-GAP domain to the surface of the mutant domain, consistent with the secondary structure analysis that showed significant alteration in the mutant protein conformation. Our data concludes that the K1444N (K1423N) mutant lead to increasing the rigidity and compactness of the protein. This study provides evidence of the benefits of the computational tools in predicting the pathogenicity of genetic mutations and suggests the application of MDS and different in silico prediction tools for variant assessment and classification in genetic clinics.


Assuntos
Genes da Neurofibromatose 1 , Mutação , Neurofibromatose 1/genética , Neurofibromina 1/genética , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
14.
Metab Brain Dis ; 33(2): 589-600, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29047041

RESUMO

Charcot-Marie-Tooth disease (CMT) is one of the most commonly inherited congenital neurological disorders, affecting approximately 1 in 2500 in the US. About 80 genes were found to be in association with CMT. The phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is an essential enzyme in the primary stage of de novo and salvage nucleotide synthesis. The mutations in the PRPS1 gene leads to X-linked Charcot-Marie-Tooth neuropathy type 5 (CMTX5), PRS super activity, Arts syndrome, X-linked deafness-1, breast cancer, and colorectal cancer. In the present study, we obtained 20 missense mutations from UniProt and dbSNP databases and applied series of comprehensive in silico prediction methods to assess the degree of pathogenicity and stability. In silico tools predicted four missense mutations (D52H, M115 T, L152P, and D203H) to be potential disease causing mutations. We further subjected the four mutations along with native protein to 50 ns molecular dynamics simulation (MDS) using Gromacs package. The resulting trajectory files were analyzed to understand the stability differences caused by the mutations. We used the Root Mean Square Deviation (RMSD), Radius of Gyration (Rg), solvent accessibility surface area (SASA), Covariance matrix, Principal Component Analysis (PCA), Free Energy Landscape (FEL), and secondary structure analysis to assess the structural changes in the protein upon mutation. Our study suggests that the four mutations might affect the PRPS1 protein function and stability of the structure. The proposed study may serve as a platform for drug repositioning and personalized medicine for diseases that are caused by the PRPS1 deficiency.


Assuntos
Ataxia/genética , Doença de Charcot-Marie-Tooth/genética , Surdocegueira/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação/genética , Ribose-Fosfato Pirofosfoquinase/deficiência , Sequência de Aminoácidos , Doença de Charcot-Marie-Tooth/diagnóstico , Humanos , Fenótipo , Ribose-Fosfato Pirofosfoquinase/genética
15.
Phytomedicine ; 36: 160-167, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157810

RESUMO

BACKGROUND: Camptothecin (CPT), a quinoline alkaloid, is a potent inhibitor of eukaryotic topoisomerase I. Because of this property, several derivatives of CPT are used as chemotherapeutic agents. CPT is produced by several plant species belonging to the Asterid clade as well as by a number of endophytic fungal associates of these plants. In this study, we report the production of CPT by four bacterial endophytes and show the possible role of a plasmid in the biosynthesis of CPT. METHODS: Endophytic bacteria were isolated from leaves, stems and fruits of Pyrenacantha volubilis Hook. (Icacinanceae). The bacterial isolates were purified and analyzed for production of CPT by ESI-MS/MS and NMR analysis. Bacterial identity was established based on the morphology and 16s rRNA sequence analysis. Crude extracts of the bacterial endophytes were evaluated for their cytotoxicity using colon cancer cell lines. The role of plasmid in the production of CPT was studied by purging the plasmid, using acriflavine, as well as reconstituting the bacteria with the plasmid. RESULTS: Four bacterial isolates, Bacillus sp. (KP125955 and KP125956), Bacillus subtilis (KY741853) and Bacillus amyloliquefaciens (KY741854) were found to produce CPT in culture. Both based on ESI-MS/MS and NMR analysis, the identity of CPT was found to be similar to that produced by the host plant. The CPT was biologically active as evident by its cytotoxicity against colon cancer cell line. The production of CPT by the endophyte (Bacillus subtilis, KY741853) attenuated with sub-culture. A likely role of a plasmid in the production of CPT was established. A 5 kbp plasmid was recovered from the bacteria. Bacterial isolate cured of plasmid failed to produce CPT. CONCLUSION: Our study implies a possible role of a plasmid in the production of CPT by the endophytic bacteria and opens up further work to unravel the exact mechanisms that might be involved.


Assuntos
Bacillus/genética , Bacillus/metabolismo , Camptotecina/biossíntese , Magnoliopsida/microbiologia , Plasmídeos , Antineoplásicos/farmacologia , Bacillus/isolamento & purificação , Camptotecina/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Endófitos/isolamento & purificação , Frutas/microbiologia , Humanos , Folhas de Planta/microbiologia , RNA Ribossômico 16S , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
17.
J Photochem Photobiol B ; 168: 89-97, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28189845

RESUMO

A new series of bis-pyrazoles 6a-t were synthesized from 3,5-dimethyl pyrazole using sequential approach. All these compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral data. The interaction of newly synthesized bis-pyrazoles with DNA was investigated through molecular docking and absorption spectroscopic technique. Among all bis-pyrazoles compounds, the 6h compound showed lower conformational energy through in silico analysis. The interaction of each molecule in this series 6a-t with the various concentrations of DNA was examined through the UV-visible spectroscopic studies. The UV-visible spectroscopy studies on the specific binding of compound 6a, 6b, 6g, 6h, 6d, 6i, 6k, 6n, 6s with DNA have exhibited spectral shifts and the results were discussed. In further the compounds 6a-t were subjected to the in-vitro cytotoxicity studies against human pancreatic adenocarcinoma, human non-small cell lung carcinoma cell lines. Among the screened compounds, N-(3-isopropoxy-1-isopropyl-4-(3,5-dimethyl-1H-pyrazol-1-yl)-1H-pyrazol-5-yl)cyclobutane carboxamide and N-(5'-Isopropoxy-2'-isopropyl-3,5-dimethyl-2'H-[1,4'] bipyrazolyl-3'-yl)-dimethane sulfonamide were found as lead molecules since they have exhibited promising activity against both the cancer cell lines used in this study, whereas the compounds 4-(trifluoromethyl)-N-(3-isopropoxy-1-isopropyl-4-(3,5-dimethyl-2H-pyrrol-2-yl)-1H-pyrazol-5-yl)benzamide and 2,6-difluoro-N-(3-isopropoxy-1-isopropyl-4-(3,5-dimethyl-2H-pyrrol-2-yl)-1H-pyrazol-5-yl) benzamide were found to be active against the pancreatic cell line only. Rest all the other compounds were found to exhibit moderate to good activity towards both the cell lines.


Assuntos
Morte Celular/efeitos dos fármacos , DNA/metabolismo , Pirazóis/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Pirazóis/síntese química , Pirazóis/metabolismo , Análise Espectral , Relação Estrutura-Atividade
18.
Mol Immunol ; 65(1): 51-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645504

RESUMO

Clostridium perfringens type A, an anaerobic pathogen is the most potent cause of soft tissue infections like gas gangrene and enteric diseases like food poisoning and enteritis. The disease manifestations are mediated via two important exotoxins, viz. myonecrotic alpha toxin (αC) and enterotoxin (CPE). In the present study, we synthesized a bivalent chimeric protein r-Cpae comprising C-terminal binding regions of αC and CPE using structural vaccinology rationale and assessed its protective efficacy against both alpha toxin (αC) and enterotoxin (CPE) respectively, in murine model. Active immunization of mice with r-Cpae generated high circulating serum IgG (systemic), significantly increased intestinal mucosal s-IgA antibody titres and resulted in substantial protection to the immunized animals (100% and 75% survival) with reduced tissue morbidity when administered with 5×LD(100) doses of αC (intramuscular) and CPE (intra-gastric gavage) respectively. Mouse RBCs and Caco-2 cells incubated with a mixture of anti-r-Cpae antibodies and αC and CPE respectively, illustrated significantly higher protection against the respective toxins. Passive immunization of mice with a similar mixture resulted in 91-100% survival at the end of the 15 days observation period while mice immunized with a concoction of sham sera and respective toxins died within 2-3 days. This work demonstrates the efficacy of the rationally designed r-Cpae chimeric protein as a potential sub unit vaccine candidate against αC and CPE of C. perfringens type A toxemia.


Assuntos
Toxinas Bacterianas/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Infecções por Clostridium/imunologia , Enterotoxinas/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Fosfolipases Tipo C/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Células CACO-2 , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/genética , Clostridium perfringens/patogenicidade , Modelos Animais de Doenças , Enterotoxinas/genética , Feminino , Humanos , Imunização , Imunização Passiva , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfolipases Tipo C/genética
19.
Vaccine ; 32(25): 3075-81, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24699467

RESUMO

Clostridium perfringens and Staphylococcus aureus are the two important bacteria frequently associated with majority of the soft tissue infections. The severity and progression of the diseases caused by these pathogens are attributed primarily to the alpha toxins they produce. Previously, we synthesized a non-toxic chimeric molecule r-αCS encompassing the binding domains of C. perfringens and S. aureus alpha toxins and demonstrated that the r-αCS hyperimmune polysera reacts with both the native wild type toxins. In the present report, we evaluated efficacy of r-αCS in conferring protection against C. perfringens and S. aureus alpha toxin infections in murine model. Immunization of BALB/c with r-αCS was effective in inducing both high titers of serum anti-r-αCS antibodies after three administrations. Sub-typing the antibody pool revealed high proportions of IgG1 indicating a Th2-polarized immune response. The r-αCS stimulated the proliferation of splenocytes from the immunized mice upon re-induction by the antigen, in vitro. The levels of interleukin-10 increased while TNF-α was found to be downregulated in the r-αCS induced splenocytes. Mice immunized with r-αCS were protected against intramuscular challenge with 5×LD100 doses of C. perfringens and S. aureus alpha toxins with >80% survival, which killed control animals within 48-72h. Passive immunization of mice with anti-r-αCS serum resulted in 50-80% survival. Our results indicate that r-αCS is a remarkable antigen with protective efficacy against alpha toxin mediated C. perfringens and S. aureus soft tissue co-infections.


Assuntos
Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Infecções por Clostridium/prevenção & controle , Proteínas Hemolisinas/imunologia , Infecções Estafilocócicas/prevenção & controle , Fosfolipases Tipo C/imunologia , Animais , Anticorpos Antibacterianos/sangue , Clostridium perfringens/imunologia , Feminino , Células HeLa , Humanos , Imunização Passiva , Imunoglobulina G/sangue , Interleucina-10/imunologia , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/imunologia , Staphylococcus aureus/imunologia , Células Th2/imunologia , Fator de Necrose Tumoral alfa/imunologia
20.
J Phys Chem A ; 117(21): 4394-403, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23638683

RESUMO

Helium nanodroplets are widely used as a cold, weakly interacting matrix for spectroscopy of embedded species. In this work, we excite or ionize doped He droplets using synchrotron radiation and study the effect onto the dopant atoms depending on their location inside the droplets (rare gases) or outside at the droplet surface (alkali metals). Using photoelectron-photoion coincidence imaging spectroscopy at variable photon energies (20-25 eV), we compare the rates of charge-transfer to Penning ionization of the dopants in the two cases. The surprising finding is that alkali metals, in contrast to the rare gases, are efficiently Penning ionized upon excitation of the (n = 2)-bands of the host droplets. This indicates rapid migration of the excitation to the droplet surface, followed by relaxation, and eventually energy transfer to the alkali dopants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA