Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Public Health ; 17(3): 450-456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262082

RESUMO

BACKGROUND: In recent years, new drugs for the treatment of various diseases, thereby the emergence of antimicrobial resistance tremendously increased because of the increased consumption rate of various drugs. However, the irrational use of antibiotics increases the microbial resistance along with that the frequency of mortality associated with infections is higher. Broad-spectrum antibiotics were effectively against various bacteria and the unrestricted application of antibiotics lead to the emergence of drug resistance. The present study was aimed to detect the antibacterial properties of lipopeptide novel drug producing Streptomyces parvulus. METHODS: A lipopeptide-producing S. parvulus was isolated from the soil sample. The inhibitory effect of lipopeptide was detected against Gram-positive and Gram-negative bacteria. Bactericidal activity and minimum inhibitory concentration (MIC) were assayed. The IC50 value was analysed against ovarian and human melanoma cell lines. The experimental mouse model was infected withKlebsiella pneumoniae and treated with lipopeptide and bactericidal activity was determined. RESULTS: The results indicated that the antibacterial activity of lipopeptide ranges from 13 ± 1 mm to 32 ± 2 mm against Gram-positive and Gram-negative strains. The lowest MIC value was noted as 1.5 ± 0.1 µg/mL against K. pneumoniae and the highest against E. aerogenes (7.5 ± 0.2 µg/mL). The IC50 value was considerably high for the ovarian cell lines and human melanoma cell lines (426 µg/mL and 503 µg/mL). At 25 µg/mL concentration of lipopeptide, only 16.4% inhibition was observed in the ovarian cell line whereas 20.2% inhibition was achieved at this concentration in the human melanoma cell line. Lipopeptide inhibited bacterial growth and was completely inhibited at a concentration of 20 µg/mL. Lipopeptide reduced bacterial load in experimental mice compared to control (p < 0.05). CONCLUSION: Lipopeptide activity and its non-toxic nature reveal that it may serve as a lead molecule in the development of a novel drug.


Assuntos
Infecções Bacterianas , Melanoma , Streptomyces , Humanos , Animais , Camundongos , Antibacterianos/química , Lipopeptídeos/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Biofilmes , Testes de Sensibilidade Microbiana
2.
Phytomedicine ; 45: 41-48, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29573911

RESUMO

BACKGROUND: Limonene is a cyclic monoterpene (CTL) found in citrus fruits and many plant kingdoms. It has attracted attention as potential molecule due to its diverse biological activities. However, molecular mechanism involved in the osteogenic induction of CTL in C2C12 skeletal muscle cells remain unclear. PURPOSE: Skeletal development maintains the bone homeostasis through bone remodeling process. It coordinated between the osteoblast and osteoblast process. Osteoporosis is one of the most common bone diseases caused by a systemic reduction in bone mass. Recent osteoporosis treatment is based on the use of anti-resorptive and bone forming drugs. However, long term use of these drugs is associated with serious side effects and strategies on the discovery of lead compounds from natural products for osteoblast differentiation are urgently needed. Therefore, we planned to find out the role of CTL on osteoblast differentiation and glucose uptake in C2C12 cells and its effect on signaling pathways. METHODS: Cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, genes, and proteins associated with osteoblast activation and glucose utilization were analysed. RESULTS: CTL did not affect the cell viability. CTL significantly increased ALP activity, calcium depositions and the expression of osteogenic specific genes such as Myogenin, Myogenic differentiation 1 (MyoD), ALP, Run-related transcription factor 2(RUNX2), osteocalcin (OCN). In addition, CTL induced the mRNA expression of bone morphogenetic proteins (BMP-2 BMP-4 BMP-6 BMP-7 BMP-9). CTL treatment enhanced 2-Deoxy-d-glucose (2DG) uptake. Moreover, CTL stimulated the activation of p38 mitogen activated protein kinase (p38MAPK), Protein kinase B (Akt), Extracellular signal related kinase (ERKs) by increasing phosphorylation. CTL treatment abolished p38 inhibitor (SB203580) mediated inhibition of osteoblast differentiation, but no effect was noted by ERKs specific inhibitor (PD98059). CONCLUSION: These results suggest that limonene induces osteoblast differentiation and glucose uptake through activating p38MAPK and Akt signaling pathways, confirming the molecular basis of the osteoblast differentiation by limonene in C2C12 skeletal muscle cells.


Assuntos
Cicloexenos/farmacologia , Osteoblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Terpenos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Desoxiglucose/metabolismo , Desoxiglucose/farmacocinética , Regulação da Expressão Gênica/genética , Imidazóis/farmacologia , Limoneno , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
3.
Molecules ; 21(5)2016 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-27187346

RESUMO

The present study was designed to evaluate the antitumor effects of the synthetic Mannich base 1,3-bis-((3-hydroxynaphthalen-2-yl)phenylmethyl)urea (1,3-BPMU) against HEP-G2 hepatoma cells and diethylnitrosamine (DEN)-induced hepatocarcinoma (HCC) in albino rats. In vitro analysis results revealed that 1,3-BPMU showed significant cytotoxicity and cell growth inhibition in HEP-G2 hepatoma cells in a concentration-dependent manner. Furthermore, flow cytometry results indicated that 1,3-BPMU enhanced early and late apoptosis. The maximum apoptosis was exhibited at a concentration of 100 µg/mL of 1,3-BPMU. In in vivo analysis, DEN treatment increased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT with decreased antioxidant activity as compared to control rats. However, 1,3-BPMU treatment to DEN-induced rats decreased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT and increased the activities of SOD, CAT, GPx, GST and GR (p < 0.05). Furthermore, 1,3-BPMU enhanced the apoptosis via upregulation of caspase-3 and caspase-9 and the downregulation of Bcl-2 and Bcl-XL mRNA expression as compared to DEN-induced rats. Histological and ultrastructural investigation showed that 1,3-BPMU treatment renovated the internal architecture of the liver in DEN-induced rats. In this study, the molecular and pre-clinical results obtained by treatment of DEN-induced rats with 1,3-BPMU suggested that 1,3-BPMU might be considered as an antitumor compound in the future.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Bases de Mannich/farmacologia , Células Hep G2 , Humanos
4.
Indian J Clin Biochem ; 31(2): 194-202, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27069327

RESUMO

Hepato cellular carcinoma (HCC) is a type of malignant tumor. To investigate the proteins in cancer molecular mechanism and its role in HCC, we have used proteomic tools such as 2DE and MALDI-TOF-MS. Our investigation ravels that, plasma α-fetoprotein and carcinoembryonic antigen levels were elevated in DEN induced rats and gradually decreased after the treatment with 1,3BPMU. 2DE and MALDI-TOF-MS tool offers to identify the up and down regulation of proteins in HCC. Proteomic study reveals that, five differentially expressed proteins were identified in DEN induced rats and 1,3BPMU treated rats i.e. three up regulated protein such as T kininogen, NDPKB, PRMT1 (DEN induced rats), RGS19 and PAF (1,3BPMU treated rats) in 3BPMU treated rats, activation of transcription of a single gene from multiple promoters provides flexibility in the controlled gene expression. The regulations of hepatocyte stimulating factor were slow down the proliferation of hepatic cell and uncontrolled hepatic cell growth and also molecular signals strongly argue for a patho-physiological role in liver metastasis to control the cell aggression. This indicates that, anti cancer property of 1,3BPMU can be used as potent anti cancer agent. The present study also shows the proteomic approach helps to elucidate the tumor maker as well as regulatory marker proteins in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA