Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 163(1): 397-414, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19540313

RESUMO

Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are inactive. More importantly, the regression analysis indicated that pCREB activation in approximately 98% of PPT cholinergic neurons, was caused by REM sleep. Moreover the results indicate that during REM sleep, PPT intracellular PKA activation and a transcriptional cascade involving pCREB occur exclusively in the cholinergic neurons.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Ponte/metabolismo , Formação Reticular/metabolismo , Sono REM/fisiologia , Animais , Biomarcadores/metabolismo , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Imuno-Histoquímica , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Masculino , Núcleo Tegmental Pedunculopontino/citologia , Núcleo Tegmental Pedunculopontino/metabolismo , Fosforilação , Ponte/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/citologia , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar , Análise de Regressão , Formação Reticular/citologia
2.
Nat Genet ; 13(1): 43-7, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8673102

RESUMO

The discovery that some cases of familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) has focused much attention on the function of SOD1 as related to motor neuron survival. Here we describe the creation and characterization of mice completely deficient for this enzyme. These animals develop normally and show no overt motor deficits by 6 months in age. Histological examination of the spinal cord reveals no signs of pathology in animals 4 months in age. However Cu/Zn SOD-deficient mice exhibit marked vulnerability to motor neuron loss after axonal injury. These results indicate that Cu/Zn SOD is not necessary for normal motor neuron development and function but is required under physiologically stressful conditions following injury.


Assuntos
Axônios/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/patologia , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Animais , Axônios/patologia , Nervo Facial/citologia , Nervo Facial/patologia , Nervo Facial/fisiologia , Glutationa/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Mutantes , Neurônios Motores/patologia , Recombinação Genética , Valores de Referência , Medula Espinal/citologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA