Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073805

RESUMO

Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines.

2.
Anal Chem ; 92(12): 8170-8177, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32407621

RESUMO

Conventional antibody-drug conjugate (ADC) manufacturing methods are based on the nonselective bioconjugation of cytotoxic drugs to lysine and cysteine residues. This results in highly heterogeneous mixtures of different drug-antibody ratios (DAR) that can significantly affect the safety and efficacy of the ADC product. Recently, an innovative procedure named GlyCLICK was suggested, consisting of a two-step enzymatic procedure to transform Fc-glycans present on IgG mAbs into two site-specific anchor points for the conjugation of any alkyne-containing payload of choice. Here, we evaluated the conjugation process by comparing trastuzumab and trastuzumab conjugated with DM1, following the GlyCLICK procedure. Complementary reversed phase liquid chromatography (RPLC) and hydrophilic interaction chromatography (HILIC) coupled to high-resolution mass spectrometry (HRMS) were used to analyze the protein subunits (ca. 25-100 kDa) obtained after different levels of enzymatic digestion and chemical reduction. Our results demonstrated that the hydrophobic character of the drug molecule allows to rapidly confirm the Fc-drug conjugation at the chromatographic level. Furthermore, the hyphenation to MS detection provided accurate mass information on the ADC subunits and facilitated the DAR determination of 2.0. Therefore, this work illustrates how middle-up analysis using LC/HRMS can provide accurate and complementary information on the critical quality attributes of these novel site-specific ADC products.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/análise , Polissacarídeos/química , Cromatografia Líquida , Espectrometria de Massas , Conformação Molecular
3.
Methods Mol Biol ; 2078: 131-145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31643054

RESUMO

The antibody Fc-glycans are interesting targets for conjugation of cytotoxic compounds due to their localization and their chemical composition. In striving to obtain site-specific conjugates, the antibody Fc-glycans have been explored in numerous ways. Here we present a two-step enzymatic methodology coupled to click-chemistry for conjugation at the core GlcNAc of the Fc-glycan resulting in ADCs that are homogenous with a DAR 2.0, retain antigen binding, and display cytotoxic anti-tumor effects both in vitro and in vivo.


Assuntos
Anticorpos Monoclonais/química , Desenvolvimento de Medicamentos , Imunoconjugados/química , Polissacarídeos/química , Aminoácidos/química , Azidas/química , Carboidratos/química , Linhagem Celular Tumoral , Química Click , Glicosilação , Humanos , Imunoconjugados/farmacologia , Fragmentos Fc das Imunoglobulinas/química , Relação Estrutura-Atividade
4.
Glycobiology ; 30(4): 254-267, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31616919

RESUMO

The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.


Assuntos
Glicosídeo Hidrolases/metabolismo , Imunoglobulina G/metabolismo , Polissacarídeos/metabolismo , Animais , Glicosídeo Hidrolases/química , Humanos , Imunoglobulina G/química , Polissacarídeos/química
5.
Methods Mol Biol ; 1535: 319-329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27914089

RESUMO

Fab fragments are valuable research tools in various areas of science including applications in imaging, binding studies, removal of Fc-mediated effector functions, mass spectrometry, infection biology, and many others. The enzymatic tools for the generation of Fab fragments have been discovered through basic research within the field of molecular bacterial pathogenesis. Today, these enzymes are widely applied as research tools and in this chapter, we describe methodologies based on bacterial enzymes to generate Fab fragments from both human and mouse IgG. For all human IgG subclasses, the IdeS enzyme from Streptococcus pyogenes has been applied to generate F(ab')2 fragments that subsequently can be reduced under mild conditions to generate a homogenous pool of Fab' fragments. The enzyme Kgp from Porphyromonas gingivalis has been applied to generate intact Fab fragments from human IgG1 and the Fab fragments can be purified using a CH1-specific affinity resin. The SpeB protease, also from S. pyogenes, is able to digest mouse IgGs and has been applied to digest antibodies and Fab fragments can be purified on light chain affinity resins. In this chapter, we describe methodologies that can be used to obtain Fab fragments from human and mouse IgG using bacterial proteases.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Exotoxinas/metabolismo , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Animais , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Cisteína Endopeptidases Gingipaínas , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Camundongos , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA