Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Cancer ; 24(1): 509, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654280

RESUMO

BACKGROUND: Glioblastoma is a malignant and aggressive type of central nevous system malignancy characterized by many distinct biological features including extensive hypoxia. Hypoxia in glioblatoma associates with complex signaling patterns including activation of several pathways such as MAPK, PI3K-AKT/mTOR and IL-6/JAK/STAT3 with the master regulator HIF-1, which in turn drive particular tumor behaviors determining, in the end, treatment outcomes and patients fate. Thus, the present study was designed to investigate the expression of selected hypoxia related factors including STAT3 in a small set of long-term surviving glioma patients. METHODS: The expression of selected hypoxia related factors including STAT3 was evaluated in a time series of formalin fixed paraffin embedded and cryopreserved glioma samples from repeatedly resected patients. In addition, comparative studies were also conducted on primary glioma cells derived from original patient samples, stabilized glioma cell lines and tumor-xenograft mice model. Obtained data were correlated with clinical findings too. RESULTS: Glioblastoma samples of the analyzed patients displayed heterogeneity in the expression of hypoxia- related and EMT markers with most interesting trend being observed in pSTAT3. This heterogeneity was subsequently confirmed in other employed models (primocultures derived from glioblastoma tissue resections, cryopreserved tumor specimens, stabilized glioblastoma cell line in vitro and in vivo) and concerned, in particular, STAT3 expression which remained stable. In addition, subsequent studies on the role of STAT3 in the context of glioblastoma hypoxia demonstrated opposing effects of its deletion on cell viability as well as the expression of hypoxia and EMT markers. CONCLUSIONS: Our results suport the importance of STAT3 expression and activity in the context of hypoxia in malignant glioblastoma long-term surviving glioma patients while emphasizing heterogeneity of biological outcomes in varying employed tumor models.


Assuntos
Glioma , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Humanos , Animais , Camundongos , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Masculino , Feminino , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Idoso , Adulto , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Regulação Neoplásica da Expressão Gênica , Hipóxia/metabolismo
2.
Eur J Med Chem ; 258: 115593, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390508

RESUMO

17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 µM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17ß-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , 17-Hidroxiesteroide Desidrogenases , Encéfalo/metabolismo , Inibidores Enzimáticos/química
3.
Front Aging Neurosci ; 14: 1048260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561137

RESUMO

To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.

4.
Cancers (Basel) ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291930

RESUMO

(1) Background: N-cadherin expression, epithelial-to-mesenchymal transition (EMT) and aggressive biological phenotype of tumor cells are linked although the underlying mechanisms are not entirely clear. (2) Methods: In this study, we used two different in vitro cell models with varying N-cadherin expression (stabilized lines and primocultures) and investigated their select biological features including the degree of their chemoresistance both in vitro as well as in vivo. (3) Results: We report that although enforced N-cadherin expression changes select morphological and behavioral characteristics of exposed cells, it fails to successfully reprogram cells to the aggressive, chemoresistant phenotype both in vitro as well as in vivo as verified by implantation of those cells into athymic mice. Conversely, primocultures of patient-colonic cells with naturally high levels of N-cadherin expression show fully aggressive and chemoresistant phenotype pertinent to EMT (in vitro and in vivo), with a potential to develop new mutations and in the presence of dysregulated regulatory pathways as represented by investigated miRNA profiles. (4) Conclusions: The presented results bring new facts concerning the functional axis of N-cadherin expression and related biological features of colon cancer cells and highlight colon cancer primocultures as a useful model for such studies.

5.
Toxicol Appl Pharmacol ; 434: 115823, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896433

RESUMO

Alisertib (MLN8237), a novel Aurora A kinase inhibitor, is currently being clinically tested in late-phase trials for the therapy of various malignancies. In the present work, we describe alisertib's potential to perpetrate pharmacokinetic drug-drug interactions (DDIs) and/or to act as an antagonist of multidrug resistance (MDR). In accumulation assays, alisertib potently inhibited ABCC1 transporter, but not ABCB1 or ABCG2. The results of molecular modeling suggested a bifunctional mechanism for interaction on ABCC1. In addition, alisertib was characterized as a low- to moderate-affinity inhibitor of recombinant CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 isoenzymes, but without potential clinical relevance. Drug combination studies revealed the capability of alisertib to synergistically antagonize ABCC1-mediated resistance to daunorubicin. Although alisertib exhibited substrate characteristics toward ABCB1 transporter in monolayer transport assays, comparative proliferation studies showed lack of its MDR-victim behavior in cells overexpressing ABCB1 as well as ABCG2 and ABCC1. Lastly, alisertib did not affect the expression of ABCC1, ABCG2, ABCB1 transporters and CYP1A2, CYP3A4, CYP2B6 isozymes on mRNA level in various systemic and tumoral models. In conclusion, our study suggests that alisertib is a drug candidate with negligible potential for perpetrating systemic pharmacokinetic DDIs on ABCB1, ABCG2 and cytochromes P450. In addition, we introduce alisertib as an effective dual-activity chemosensitizer whose MDR-antagonistic capacities are not impaired by efflux or effect on MDR phenotype. Our in vitro findings provide important pieces of information for clinicians when introducing alisertib into the clinical area.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Azepinas/farmacologia , Azepinas/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Domínio Catalítico , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica
6.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769363

RESUMO

Tepotinib is a novel tyrosine kinase inhibitor recently approved for the treatment of non-small cell lung cancer (NSCLC). In this study, we evaluated the tepotinib's potential to perpetrate pharmacokinetic drug interactions and modulate multidrug resistance (MDR). Accumulation studies showed that tepotinib potently inhibits ABCB1 and ABCG2 efflux transporters, which was confirmed by molecular docking. In addition, tepotinib inhibited several recombinant cytochrome P450 (CYP) isoforms with varying potency. In subsequent drug combination experiments, tepotinib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCB1 and ABCG2 overexpression, respectively. Remarkably, MDR-modulatory properties were confirmed in ex vivo explants derived from NSCLC patients. Furthermore, we demonstrated that anticancer effect of tepotinib is not influenced by the presence of ABC transporters associated with MDR, although monolayer transport assays designated it as ABCB1 substrate. Finally, tested drug was observed to have negligible effect on the expression of clinically relevant drug efflux transporters and CYP enzymes. In conclusion, our findings provide complex overview on the tepotinib's drug interaction profile and suggest a promising novel therapeutic strategy for future clinical investigations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Citostáticos/farmacologia , Interações Medicamentosas , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperidinas/farmacologia , Piridazinas/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
7.
Hum Exp Toxicol ; 40(12): 2063-2073, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34075792

RESUMO

Colorectal carcinoma (CRC) is a leading malignant disease in most developed countries. In advanced stages it presents with metastatic dissemination and significant chemoresistance. Despite intensive studies, no convincing evidence has been published concerning the association of cadherins and epithelial-mesenchymal transition (EMT) as a direct cause of acquired chemoresistance in CRC. The present study was designed to investigate the role of E-cadherin in EMT and its associated chemosensitivity/chemoresistance in four immortalized CRC cell lines representing various stages of CRC development (i.e. HT29 and Caco-2-early, SW480 and SW620 late). The expression of E-cadherin gene CDH1 was downregulated by the specific siRNA. Cell proliferation and chemosensitivity to irinotecan (IT) and oxaliplatin (OPT) were detected using WST-1 and x-CELLigence Real Time analysis. Expression of selected EMT markers were tested and compared using RT-PCR and western blot analysis in both variants (E-cadherin silenced and non-silenced) of each cell line. We have discovered that downregulation of E-cadherin expression has a diverse effect on both cell proliferation as well as the expression of EMT markers in individual tested CRC cell lines, with Caco-2 cells being the most responsive. On the other hand, reduced E-cadherin expression resulted in increased sensitivity of all cell lines to IT and mostly to OPT which might be related to changes in intracellular metabolism of these drugs. These results suggest dichotomy of E-cadherin involvement in the phenotypic EMT spectrum of CRC and warrants further mechanistic studies.


Assuntos
Antígenos CD/genética , Antineoplásicos/farmacologia , Caderinas/genética , Resistencia a Medicamentos Antineoplásicos , Irinotecano/farmacologia , Oxaliplatina/farmacologia , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Inativação Gênica , Humanos , RNA Interferente Pequeno/genética
8.
Cancers (Basel) ; 12(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231067

RESUMO

Ensartinib (X-396) is a promising tyrosine kinase inhibitor currently undergoing advanced clinical evaluation for the treatment of non-small cell lung cancer. In this work, we investigate possible interactions of this promising drug candidate with ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 biotransformation enzymes (CYPs), which play major roles in multidrug resistance (MDR) and pharmacokinetic drug-drug interactions (DDIs). Accumulation studies showed that ensartinib is a potent inhibitor of ABCB1 and ABCG2 transporters. Additionally, incubation experiments with recombinant CYPs showed that ensartinib significantly inhibits CYP3A4 and CYP2C9. Subsequent molecular docking studies confirmed these findings. Drug combination experiments demonstrated that ensartinib synergistically potentiates the antiproliferative effects of daunorubicin, mitoxantrone, and docetaxel in ABCB1, ABCG2, and CYP3A4-overexpressing cellular models, respectively. Advantageously, ensartinib's antitumor efficiency was not compromised by the presence of MDR-associated ABC transporters, although it acted as a substrate of ABCB1 in Madin-Darby Canine Kidney II (MDCKII) monolayer transport assays. Finally, we demonstrated that ensartinib had no significant effect on the mRNA-level expression of examined transporters and enzymes in physiological and lung tumor cellular models. In conclusion, ensartinib may perpetrate clinically relevant pharmacokinetic DDIs and modulate ABCB1-, ABCG2-, and CYP3A4-mediated MDR. The in vitro findings presented here will provide a valuable foundation for future in vivo investigations.

9.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540507

RESUMO

PURPOSE: Primary cell lines are a valuable tool for evaluation of tumor behavior or sensitivity to anticancer treatment and appropriate dissociation of cells could preserve genomic profile of the original tissue. The main aim of our study was to compare the influence of two methods of glioblastoma multiforme (GBM) cell derivation (mechanic-MD; enzymatic-ED) on basic biological properties of thus derived cells and correlate them to the ones obtained from stabilized GBM cell line A-172. METHODS: Cell proliferation and migration (xCELLigence Real-Time Cell Analysis), expression of microRNAs and protein markers (RT-PCR and Western blotting), morphology (phase contrast and fluorescent microscopy), and accumulation of temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide (AIC) inside the cells (LC-MS analysis) were carried out in five different samples of GBM (GBM1, GBM2, GBM32, GBM33, GBM34), with each of them processed by MD and ED types of isolations. The same analyses were done in the A-172 cell line too. RESULTS: Primary GBM cells obtained by ED or MD approaches significantly differ in biological behavior and properties of these cells. Unlike in primary MD GBM cells, higher proliferation, as well as migration, was observed in primary ED GBM cells, which were also associated with the acquired mesenchymal phenotype and higher sensitivity to TMZ. Finally, the same analyses of stabilized GBM cell line A-172 revealed several important differences in measured parameters. CONCLUSIONS: GBM cells obtained by MD and ED dissociation show considerable heterogeneity, but based on our results, MD approach should be the preferred method of primary GBM cell isolation.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Separação Celular/métodos , Glioblastoma/patologia , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Temozolomida/farmacologia , Células Tumorais Cultivadas
10.
Front Pharmacol ; 10: 600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191322

RESUMO

Flubendazole (FLU), an anthelmintic drug of benzimidazole type, is now considered a promising anti-cancer agent due to its tubulin binding ability and low system toxicity. The present study was aimed at determining more information about FLU reduction in human liver, because this information has been insufficient until now. Subcellular fractions from the liver of 12 human patients (6 male and 6 female patients) were used to study the stereospecificity, cellular localization, coenzyme preference, enzyme kinetics, and possible inter-individual or sex differences in FLU reduction. In addition, the risk of FLU interaction with other drugs was evaluated. Our study showed that FLU is predominantly reduced in cytosol, and the reduced nicotinamide adenine dinucleotide phosphate (NADPH) coenzyme is preferred. The strict stereospecificity of FLU carbonyl reduction was proven, and carbonyl reductase 1 was identified as the main enzyme of FLU reduction in the human liver. A higher reduction of FLU and a higher level of carbonyl reductase 1 protein were found in male patients than in female patients, but overall inter-individual variability was relatively low. Hepatic intrinsic clearance of FLU is very low, and FLU had no effect on doxorubicin carbonyl reduction in the liver and in cancer cells. All these results fill the gaps in the knowledge of FLU metabolism in human.

11.
J Med Chem ; 61(23): 10753-10766, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30383374

RESUMO

Six chlorinated bispyridinium mono-oximes, analogous to potent charged reactivators K027, K048, and K203, were synthesized with the aim of improving lipophilicity and reducing the p Ka value of the oxime group, thus resulting in a higher oximate concentration at pH 7.4 compared to nonchlorinated analogues. The nucleophilicity was examined and the p Ka was found to be lower than that of analogous nonchlorinated oximes. All the new compounds efficiently reactivated human AChE inhibited by nerve agents cyclosarin, sarin, and VX. The most potent was the dichlorinated analogue of oxime K027 with significantly improved ability to reactivate the conjugated enzyme due to improved binding affinity and molecular recognition. Its overall reactivation of sarin-, VX-, and cyclosarin-inhibited AChE was, respectively, 3-, 7-, and 8-fold higher than by K027. Its universality, PAMPA permeability, favorable acid dissociation constant coupled with its negligible cytotoxic effect, and successful ex vivo scavenging of nerve agents in whole human blood warrant further analysis of this compound as an antidote for organophosphorus poisoning.


Assuntos
Acetilcolinesterase/metabolismo , Cloro/química , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Agentes Neurotóxicos/farmacologia , Oximas/química , Oximas/farmacologia , Acetilcolinesterase/química , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Fenômenos Químicos , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/metabolismo , Humanos , Isomerismo , Simulação de Acoplamento Molecular , Oximas/síntese química , Oximas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
12.
Biomed Pharmacother ; 95: 828-836, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28903178

RESUMO

BACKGROUND: One approach to improve effect of chemotherapy is combination of classical cytostatic drugs with natural compounds, e. g. sesquiterpenes. In our previous study, sesquiterpenes ß-caryophyllene oxide (CAO) and trans-nerolidol (NER) improved the anti-proliferative effect of doxorubicin (DOX) in intestinal cancer cell lines. PURPOSE: The present study was designed to evaluate the effect of CAO and NER on DOX efficacy, focusing on cell proliferation, migration, apoptosis and DOX accumulation in breast cancer cells MDA-MB-231 and MCF7 in vitro and in mice bearing solid Ehrlich tumors (EST) in vivo. METHODS: The impact of cytotoxic effect was assessed by the neutral red uptake test. The ability to migrate was tested using real-time measurement in x-CELLigence system. Expressions of molecules were examined using western blot analysis. The accumulation of DOX inside the cells using time lapse microscopy was observed. The mice with inoculated EST cells were treated repeatedly with DOX and DOX+CAO or DOX+NER and the growth of tumors were monitored. DOX concentrations in plasma and tumor were assayed using HPLC. RESULTS: In MDA-MB-231, combination of DOX with CAO enhanced anti-proliferative effect and acted strongly synergistic. NER increased accumulation of DOX inside the cells; moreover combination DOX with NER suppressed migration ability in vitro. In vivo, apoptosis was activated especially in group treated with DOX and CAO. However, none of tested sesquiterpenes was able to improve DOX accumulation in tumors and DOX-mediated inhibition of tumor growth. CONCLUSION: In conclusion, sesquiterpenes CAO and NER increased the efficacy of DOX in breast cancer cells in vitro, but did not improve its effect in vivo, in Ehrlich solid tumor bearing mice.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Doxorrubicina/uso terapêutico , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Sesquiterpenos/uso terapêutico , Animais , Neoplasias da Mama/sangue , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/sangue , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Resultado do Tratamento
13.
Molecules ; 22(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632185

RESUMO

ß-caryophyllene oxide (CAO), α-humulene (HUM), trans-nerolidol (NER) and valencene (VAL) are constituents of the essential oil of Myrica rubra (MEO), which has significant antiproliferative effect in various cancer cell lines. In the present study, we compared the antiproliferative effect of these sesquiterpenes alone and in combination with the cytostatic drug doxorubicin (DOX) in cancer cell lines with different sensitivity to DOX. Two ovarian cancer cell lines (sensitive A2780 and partly resistant SKOV3) and two lymphoblast cancer cell lines (sensitive CCRF/CEM and completely resistant CEM/ADR) were used. The observed effects varied among sesquiterpenes and also differed in individual cell lines, with only VAL being effective in all the cell lines. A strong synergism of DOX with NER was found in the A2780 cells, while DOX acted synergistically with HUM and CAO in the SKOV3 cells. In the CCRF/CEM cells, a synergism of DOX with CAO and NER was observed. In resistant CEM/ADR cells, sesquiterpenes did not increase DOX efficacy, although they significantly increased accumulation of DOX (up to 10-times) and rhodamine-123 (substrate of efflux transporter ABCB1) within cancer cells. In conclusion, the tested sesquiterpenes were able to improve DOX efficacy in the sensitive and partly resistant cancer cells, but not in cells completely resistant to DOX.


Assuntos
Doxorrubicina/farmacologia , Myrica/química , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Sesquiterpenos Monocíclicos , Óleos Voláteis/química , Sesquiterpenos Policíclicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
14.
Planta Med ; 82(1-2): 89-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26485638

RESUMO

Essential oil from the leaves of Myrica rubra, a subtropical Asian fruit tree traditionally used in folk medicines, has a significant antiproliferative effect in several intestinal cancer cell lines. Doxorubicin belongs to the most important cytostatics used in cancer therapy. The present study was designed to evaluate the effects of defined essential oil from M. rubra leaves on efficacy, prooxidative effect, and accumulation of doxorubicin in cancer cell lines and in non-cancerous cells. For this purpose, intestinal adenocarcinoma CaCo2 cells were used. Human fibroblasts (periodontal ligament) and a primary culture of rat hepatocytes served as models of non-cancerous cells. The results showed that the sole essential oil from M. rubra has a strong prooxidative effect in cancer cells while it acts as a mild antioxidant in hepatocytes. Combined with doxorubicin, the essential oil enhanced the antiproliferative and prooxidative effects of doxorubicin in cancer cells. At higher concentrations, synergism of doxorubicin and essential oil from M. rubra was proved. In non-cancerous cells, the essential oil did not affect the toxicity of doxorubicin and the doxorubicin-mediated reactive oxygen species formation. The essential oil increased the intracellular concentration of doxorubicin and enhanced selectively the doxorubicin accumulation in nuclei of cancer cells. Taken together, essential oil from M. rubra leaves could be able to improve the doxorubicin efficacy in cancer cells due to an increased reactive oxygen species production, and the doxorubicin accumulation in nuclei of cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Doxorrubicina/farmacologia , Myrica/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Intestinais , Masculino , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
15.
Molecules ; 20(8): 15343-58, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26307963

RESUMO

The sesquiterpenes ß-caryophyllene, ß-caryophyllene oxide (CAO), α-humulene (HUM), trans-nerolidol (NER), and valencene (VAL) are substantial components of the essential oil from Myrica rubra leaves which has exhibited significant antiproliferative effects in several intestinal cancer cell lines, with CaCo-2 cells being the most sensitive. The present study was designed to evaluate the effects of these sesquiterpenes on the efficacy and toxicity of the anticancer drug doxorubicin (DOX) in CaCo-2 cancer cells and in primary culture of rat hepatocytes. Our results showed that HUM, NER, VAL and CAO inhibited proliferation of CaCo-2 cancer cells but they did not affect the viability of hepatocytes. CAO, NER and VAL synergistically potentiated the efficacy of DOX in cancer cells killing. All sesquiterpenes exhibited the ability to selectively increase DOX accumulation in cancer cells and did not affect DOX concentration in hepatocytes. Additionally, CAO and VAL were able to increase the pro-oxidative effect of DOX in CaCo-2 cells. Moreover, CAO mildly ameliorated DOX toxicity in hepatocytes. Based on all results, CAO seems to be the most promising compound for further testing.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Hepatócitos/efeitos dos fármacos , Myrica/química , Oxirredução/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Células CACO-2 , Linhagem Celular Tumoral , Doxorrubicina/toxicidade , Humanos , Cultura Primária de Células , Ratos
16.
Biochem Pharmacol ; 96(3): 168-78, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25986883

RESUMO

Paclitaxel (PTX), docetaxel (DTX), 5-fluorouracil (5-FU), cyclophosphamide (CYC) or tamoxifen (TMX) are combined with doxorubicin (DOX) in first-line chemotherapy regimens that are indicated for breast cancer patients. Although the efficacies of these drugs in combination treatments have been demonstrated in clinical practice, their possible interference with DOX metabolism has not been described in detail to date. In the present study, we investigated the possible interactions of human carbonyl reducing enzymes with 5-FU, PTX, DTX, CYC and TMX. First, the reducing activities of carbonyl reducing enzymes toward DOX were tested using incubations with purified recombinant enzymes. In the subsequent studies, we investigated the possible effects of the tested anticancer agents on the DOX-reducing activities of the most potent enzymes (AKR1C3, CBR1 and AKR1A1) and on the DOX metabolism driven by MCF7, HepG2 and human liver cytosols. In both of these assays, we observed that CYC and its active metabolites inhibited DOX metabolism. In the final study, we tracked the changes in AKR1C3, CBR1 and AKR1A1 expression levels following exposure to the tested cytostatics in MCF7 and HepG2 cells. Consequently, no significant changes in the expression levels of tested enzymes were detected in either cell line. Based on these findings, it is feasible to presume that inhibition rather than induction plays a role in the interactions of the tested anticancer agents with DOX-reducing enzymes. In conclusion, our results describe important molecular events that occur during combination breast cancer therapies and might modulate pharmacokinetic DOX resistance and/or behaviour.


Assuntos
Antineoplásicos/farmacologia , Ciclofosfamida/farmacologia , Doxorrubicina/farmacologia , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Taxoides/farmacologia , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase , Protocolos de Quimioterapia Combinada Antineoplásica , Biotransformação , Docetaxel , Doxorrubicina/metabolismo , Interações Medicamentosas , Células Hep G2 , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Hidroxiprostaglandina Desidrogenases/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Células MCF-7 , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tamoxifeno/farmacologia
17.
Toxicol Appl Pharmacol ; 278(3): 238-48, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24832494

RESUMO

Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2'-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Antraciclinas/farmacologia , Antibióticos Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Hidroxiprostaglandina Desidrogenases/metabolismo , Proteínas de Neoplasias/metabolismo , 3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/genética , Membro C3 da Família 1 de alfa-Ceto Redutase , Antraciclinas/agonistas , Antraciclinas/metabolismo , Antibióticos Antineoplásicos/agonistas , Antibióticos Antineoplásicos/metabolismo , Biotransformação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/agonistas , Daunorrubicina/metabolismo , Daunorrubicina/farmacologia , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Flavanonas/farmacologia , Humanos , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Hidroxiprostaglandina Desidrogenases/genética , Idarubicina/agonistas , Idarubicina/metabolismo , Idarubicina/farmacologia , Cinética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
J Steroid Biochem Mol Biol ; 143: 250-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769118

RESUMO

AKR1C3 is an important human enzyme that participates in the reduction of steroids and prostaglandins, which leads to proliferative signalling. In addition, this enzyme also participates in the biotransformation of xenobiotics, such as drugs and procarcinogens. AKR1C3 is involved in the development of both hormone-dependent and hormone-independent cancers and was recently demonstrated to confer cell resistance to anthracyclines. Because AKR1C3 is frequently upregulated in various cancers, this enzyme has been suggested as a therapeutic target for the treatment of these pathological conditions. In this study, nineteen isoquinoline alkaloids were examined for their ability to inhibit a recombinant AKR1C3 enzyme. As a result, stylopine was demonstrated to be the most potent inhibitor among the tested compounds and exhibited moderate selectivity towards AKR1C3. In the follow-up cellular studies, stylopine significantly inhibited the AKR1C3-mediated reduction of daunorubicin in intact cells without considerable cytotoxic effects. This inhibitor could therefore be used as a model AKR1C3 inhibitor in research or evaluated as a possible therapeutic anticancer drug. Furthermore, based on our results, stylopine can serve as a model compound for the design and future development of structurally related AKR1C3 inhibitors.


Assuntos
3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Alcaloides de Berberina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Membro C3 da Família 1 de alfa-Ceto Redutase , Western Blotting , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Testosterona/metabolismo , Células Tumorais Cultivadas
19.
Protein Expr Purif ; 95: 44-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24316191

RESUMO

Dehydrogenase/reductase SDR family member 7 (DHRS7, SDR34C1, retSDR4) is one of the many endoplasmic reticulum bound members of the SDR superfamily. Preliminary results indicate its potential significance in human metabolism. DHRS7 containing TEV-cleavable His10 and FLAG-tag expressed in the Sf9 cell line was solubilised, purified, and reconstituted into liposomes to enable the improved characterisation of this enzyme in the future. Igepal CA-630 was determined to be the best detergent for the solubilisation process. The solubilised DHRS7 was purified using affinity chromatography, and the purified enzyme was subjected to TEV cleavage of the affinity tags and then repurified using subtractive Ni-IMAC. The cleaved and uncleaved versions of DHRS7 were successfully reconstituted into liposomes. In addition, using tobacco specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as the substrate, the cleaved liposomal DHRS7 was found to be inactive, whereas the pure and uncleaved liposomal DHRS7 were confirmed as enzymes, which reduce carbonyl group of the substrates.


Assuntos
Proteínas de Membrana/isolamento & purificação , Oxirredutases/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Animais , Membrana Celular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
20.
Chem Biol Interact ; 191(1-3): 66-74, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21185270

RESUMO

Anthracyclines (ANTs) are widely used in the treatment of various forms of cancer. Although their usage contributes to an improvement in life expectancy, it is limited by severe adverse effects-acute and chronic cardiotoxicity. Several enzymes from both AKR and SDR superfamilies have been reported as participants in the reduction of ANTs. Nevertheless all of these are located in the cytosolic compartment. One microsomal reductase has been found to be involved in the metabolism of xenobiotics-11beta-HSD1, but no further information has been reported about its role in the metabolism of ANTs. The aim of this study is to bring new information about the biotransformation of doxorubicin (DOX), daunorubicin (DAUN) and idarubicin (IDA), not only in human liver microsomal fraction, but also by a novel human liver microsomal carbonyl reductase that has been purified by our group. The reduction of ANTs at C-13 position is regarded as the main pathway in the biotransformation of ANTs. However, our experiments with human liver microsomal fraction show different behaviour, especially when the concentration of ANTs in the incubation mixture is increased. Microsomal fraction was incubated with doxorubicin, daunorubicin and idarubicin. DOX was both reduced into doxorubicinol (DOXOL) and hydrolyzed into aglycone DOX and then subsequently reduced. The same behaviour was observed for the metabolism of DAUN and IDA. The activity of hydrolases definitely brings a new look to the entire metabolism of ANTs in microsomal fraction, as formed aglycones undergo reduction and compete for the binding site with the main ANTs. Moreover, as there are two competitive reducing reactions present for all three ANTs, kinetic values of direct reduction and the reduction of aglycone were calculated. These results were compared to previously published data for human liver cytosol. In addition, the participation of the newly determined human liver microsomal carbonyl reductase was studied. No reduction of DOX into DOXOL was detected. Nevertheless, the involvement in reduction of DAUN into DAUNOL as well as IDA into IDAOL was demonstrated. The kinetic values obtained were then compared with data which have already been reported for cytosolic ANTs reductases.


Assuntos
Oxirredutases do Álcool/metabolismo , Antraciclinas/metabolismo , Antineoplásicos/metabolismo , Microssomos Hepáticos/enzimologia , Biotransformação , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA