Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Global Spine J ; 14(3_suppl): 10S-24S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632715

RESUMO

STUDY DESIGN: Protocol for the development of clinical practice guidelines following the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) standards. OBJECTIVES: Acute SCI or intraoperative SCI (ISCI) can have devastating physical and psychological consequences for patients and their families. The treatment of SCI has dramatically evolved over the last century as a result of preclinical and clinical research that has addressed important knowledge gaps, including injury mechanisms, disease pathophysiology, medical management, and the role of surgery. In an acute setting, clinicians are faced with critical decisions on how to optimize neurological recovery in patients with SCI that include the role and timing of surgical decompression and the best strategies for hemodynamic management. The lack of consensus surrounding these treatments has prevented standardization of care across centers and has created uncertainty with respect to how to best manage patients with SCI. ISCI is a feared complication that can occur in the best of hands. Unfortunately, there are no systematic reviews or clinical practice guidelines to assist spine surgeons in the assessment and management of ISCI in adult patients undergoing spinal surgery. Given these limitations, it is the objective of this initiative to develop evidence-based recommendations that will inform the management of both SCI and ISCI. This protocol describes the rationale for developing clinical practice guidelines on (i) the timing of surgical decompression in acute SCI; (ii) the hemodynamic management of acute SCI; and (iii) the prevention, identification, and management of ISCI in patients undergoing surgery for spine-related pathology. METHODS: Systematic reviews were conducted according to PRISMA standards in order to summarize the current body of evidence and inform the guideline development process. The guideline development process followed the approach proposed by the GRADE working group. Separate multidisciplinary, international groups were created to perform the systematic reviews and formulate the guidelines. All potential conflicts of interest were vetted in advance. The sponsors exerted no influence over the editorial process or the development of the guidelines. RESULTS: This process resulted in both systematic reviews and clinical practice guidelines/care pathways related to the role and timing of surgery in acute SCI; the optimal hemodynamic management of acute SCI; and the prevention, diagnosis and management of ISCI. CONCLUSIONS: The ultimate goal of this clinical practice guideline initiative was to develop evidence-based recommendations for important areas of controversy in SCI and ISCI in hopes of improving neurological outcomes, reducing morbidity, and standardizing care across settings. Throughout this process, critical knowledge gaps and future directions were also defined.

2.
Global Spine J ; 14(3_suppl): 105S-149S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632716

RESUMO

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVES: In an effort to prevent intraoperative neurological injury during spine surgery, the use of intraoperative neurophysiological monitoring (IONM) has increased significantly in recent years. Using IONM, spinal cord function can be evaluated intraoperatively by recording signals from specific nerve roots, motor tracts, and sensory tracts. We performed a systematic review and meta-analysis of diagnostic test accuracy (DTA) studies to evaluate the efficacy of IONM among patients undergoing spine surgery for any indication. METHODS: The current systematic review and meta-analysis was performed using the Preferred Reporting Items for a Systematic Review and Meta-analysis statement for Diagnostic Test Accuracy Studies (PRISMA-DTA) and was registered on PROSPERO. A comprehensive search was performed using MEDLINE, EMBASE and SCOPUS for all studies assessing the diagnostic accuracy of neuromonitoring, including somatosensory evoked potential (SSEP), motor evoked potential (MEP) and electromyography (EMG), either on their own or in combination (multimodal). Studies were included if they reported raw numbers for True Positives (TP), False Negatives (FN), False Positives (FP) and True Negative (TN) either in a 2 × 2 contingency table or in text, and if they used postoperative neurologic exam as a reference standard. Pooled sensitivity and specificity were calculated to evaluate the overall efficacy of each modality type using a bivariate model adapted by Reitsma et al, for all spine surgeries and for individual disease groups and regions of spine. The risk of bias (ROB) of included studies was assessed using the quality assessment tool for diagnostic accuracy studies (QUADAS-2). RESULTS: A total of 163 studies were included; 52 of these studies with 16,310 patients reported data for SSEP, 68 studies with 71,144 patients reported data for MEP, 16 studies with 7888 patients reported data for EMG and 69 studies with 17,968 patients reported data for multimodal monitoring. The overall sensitivity, specificity, DOR and AUC for SSEP were 71.4% (95% CI 54.8-83.7), 97.1% (95% CI 95.3-98.3), 41.9 (95% CI 24.1-73.1) and .899, respectively; for MEP, these were 90.2% (95% CI 86.2-93.1), 96% (95% CI 94.3-97.2), 103.25 (95% CI 69.98-152.34) and .927; for EMG, these were 48.3% (95% CI 31.4-65.6), 92.9% (95% CI 84.4-96.9), 11.2 (95% CI 4.84-25.97) and .773; for multimodal, these were found to be 83.5% (95% CI 81-85.7), 93.8% (95% CI 90.6-95.9), 60 (95% CI 35.6-101.3) and .895, respectively. Using the QUADAS-2 ROB analysis, of the 52 studies reporting on SSEP, 13 (25%) were high-risk, 10 (19.2%) had some concerns and 29 (55.8%) were low-risk; for MEP, 8 (11.7%) were high-risk, 21 had some concerns and 39 (57.3%) were low-risk; for EMG, 4 (25%) were high-risk, 3 (18.75%) had some concerns and 9 (56.25%) were low-risk; for multimodal, 14 (20.3%) were high-risk, 13 (18.8%) had some concerns and 42 (60.7%) were low-risk. CONCLUSIONS: These results indicate that all neuromonitoring modalities have diagnostic utility in successfully detecting impending or incident intraoperative neurologic injuries among patients undergoing spine surgery for any condition, although it is clear that the accuracy of each modality differs.PROSPERO Registration Number: CRD42023384158.

3.
Global Spine J ; 14(3_suppl): 174S-186S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526922

RESUMO

STUDY DESIGN: Clinical practice guideline development. OBJECTIVES: Acute spinal cord injury (SCI) can result in devastating motor, sensory, and autonomic impairment; loss of independence; and reduced quality of life. Preclinical evidence suggests that early decompression of the spinal cord may help to limit secondary injury, reduce damage to the neural tissue, and improve functional outcomes. Emerging evidence indicates that "early" surgical decompression completed within 24 hours of injury also improves neurological recovery in patients with acute SCI. The objective of this clinical practice guideline (CPG) is to update the 2017 recommendations on the timing of surgical decompression and to evaluate the evidence with respect to ultra-early surgery (in particular, but not limited to, <12 hours after acute SCI). METHODS: A multidisciplinary, international, guideline development group (GDG) was formed that consisted of spine surgeons, neurologists, critical care specialists, emergency medicine doctors, physical medicine and rehabilitation professionals, as well as individuals living with SCI. A systematic review was conducted based on accepted methodological standards to evaluate the impact of early (within 24 hours of acute SCI) or ultra-early (in particular, but not limited to, within 12 hours of acute SCI) surgery on neurological recovery, functional outcomes, administrative outcomes, safety, and cost-effectiveness. The GRADE approach was used to rate the overall strength of evidence across studies for each primary outcome. Using the "evidence-to-recommendation" framework, recommendations were then developed that considered the balance of benefits and harms, financial impact, patient values, acceptability, and feasibility. The guideline was internally appraised using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool. RESULTS: The GDG recommended that early surgery (≤24 hours after injury) be offered as the preferred option for adult patients with acute SCI regardless of level. This recommendation was based on moderate evidence suggesting that patients were 2 times more likely to recover by ≥ 2 ASIA Impairment Score (AIS) grades at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, patients undergoing early surgery improved by an additional 4.50 (95% 1.70 to 7.29) points on the ASIA Motor Score compared to patients undergoing surgery after 24 hours post-injury. The GDG also agreed that a recommendation for ultra-early surgery could not be made on the basis of the current evidence because of the small sample sizes, variable definitions of what constituted ultra-early in the literature, and the inconsistency of the evidence. CONCLUSIONS: It is recommended that patients with an acute SCI, regardless of level, undergo surgery within 24 hours after injury when medically feasible. Future research is required to determine the differential effectiveness of early surgery in different subpopulations and the impact of ultra-early surgery on neurological recovery. Moreover, further work is required to define what constitutes effective spinal cord decompression and to individualize care. It is also recognized that a concerted international effort will be required to translate these recommendations into policy.

4.
Global Spine J ; 14(3_suppl): 80S-104S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526927

RESUMO

STUDY DESIGN: Mixed-methods approach. OBJECTIVES: Intra-operative spinal cord injury (ISCI) is a devastating complication of spinal surgery. Presently, a uniform definition for ISCI does not exist. Consequently, the reported frequency of ISCI and important risk factors vary in the existing literature. To address these gaps in knowledge, a mixed-methods knowledge synthesis was undertaken. METHODS: A scoping review was conducted to review the definitions used for ISCI and to ascertain the frequency of ISCI. The definition of ISCI underwent formal review, revision and voting by the Guidelines Development Group (GDG). A systematic review of the literature was conducted to determine the risk factors for ISCI. Based on this systematic review and GDG input, a table was created to summarize the factors deemed to increase the risk for ISCI. All reviews were done according to PRISMA standards and were registered on PROSPERO. RESULTS: The frequency of ISCI ranged from 0 to 61%. Older age, male sex, cardiovascular disease including hypertension, severe myelopathy, blood loss, requirement for osteotomy, coronal deformity angular ratio, and curve magnitude were associated with an increased risk of ISCI. Better pre-operative neurological status and use of intra-operative neuromonitoring (IONM) were associated with a decreased risk of ISCI. The risk factors for ISCI included a rigid thoracic curve with high deformity angular ratio, revision congenital deformity with significant cord compression and myelopathy, extrinsic intradural or extradural lesions with cord compression and myelopathy, intramedullary spinal cord tumor, unstable spine fractures (bilateral facet dislocation and disc herniation), extension distraction injury with ankylosing spondylitis, ossification of posterior longitudinal ligament (OPLL) with severe cord compression, and moderate to severe myelopathy. CONCLUSIONS: ISCI has been defined as "a new or worsening neurological deficit attributable to spinal cord dysfunction during spine surgery that is diagnosed intra-operatively via neurophysiologic monitoring or by an intraoperative wake-up test, or immediately post-operatively based on clinical assessment". This paper defines clinical and imaging factors which increase the risk for ISCI and that could assist clinicians in decision making.

5.
Global Spine J ; 14(3_suppl): 212S-222S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526921

RESUMO

STUDY DESIGN: Development of a clinical practice guideline following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) process. OBJECTIVE: The objectives of this study were to develop guidelines that outline the utility of intraoperative neuromonitoring (IONM) to detect intraoperative spinal cord injury (ISCI) among patients undergoing spine surgery, to define a subset of patients undergoing spine surgery at higher risk for ISCI and to develop protocols to prevent, diagnose, and manage ISCI. METHODS: All systematic reviews were performed according to PRISMA standards and registered on PROSPERO. A multidisciplinary, international Guidelines Development Group (GDG) reviewed and discussed the evidence using GRADE protocols. Consensus was defined by 80% agreement among GDG members. A systematic review and diagnostic test accuracy (DTA) meta-analysis was performed to synthesize pooled evidence on the diagnostic accuracy of IONM to detect ISCI among patients undergoing spinal surgery. The IONM modalities evaluated included somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs), electromyography (EMG), and multimodal neuromonitoring. Utilizing this knowledge and their clinical experience, the multidisciplinary GDG created recommendations for the use of IONM to identify ISCI in patients undergoing spine surgery. The evidence related to existing care pathways to manage ISCI was summarized and based on this a novel AO Spine-PRAXIS care pathway was created. RESULTS: Our recommendations are as follows: (1) We recommend that intraoperative neurophysiological monitoring be employed for high risk patients undergoing spine surgery, and (2) We suggest that patients at "high risk" for ISCI during spine surgery be proactively identified, that after identification of such patients, multi-disciplinary team discussions be undertaken to manage patients, and that an intraoperative protocol including the use of IONM be implemented. A care pathway for the prevention, diagnosis, and management of ISCI has been developed by the GDG. CONCLUSION: We anticipate that these guidelines will promote the use of IONM to detect and manage ISCI, and promote the use of preoperative and intraoperative checklists by surgeons and other team members for high risk patients undergoing spine surgery. We welcome teams to implement and evaluate the care pathway created by our GDG.

6.
Global Spine J ; 14(3_suppl): 166S-173S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526925

RESUMO

STUDY DESIGN: This study is a mixed methods approach. OBJECTIVES: Intraoperative spinal cord injury (ISCI) is a challenging complication in spine surgery. Intra-operative neuromonitoring (IONM) has been developed to detect changes in neural function. We report on the first multidisciplinary, international effort through AO Spine and the Praxis Spinal Cord Institute to develop a comprehensive guideline and care pathway for the prevention, diagnosis, and management of ISCI. METHODS: Three literature reviews were registered on PROSPERO (CRD 42022298841) and performed according to PRISMA guidelines: (1) Definitions, frequency, and risk factors for ISCI, (2) Meta-analysis of the accuracy of IONM for diagnosis of ISCI, (3) Reported management approaches for ISCI and related events. The results were presented in a consensus session to decide the definition of IONM and recommendation of its use in high-risk cases. Based on a literature review of management strategies for ISCI, an intra-operative checklist and overall care pathway was developed by the study team. RESULTS: An operational definition and high-risk patient categories for ISCI were established. The reported incidence of deficits was documented to be higher in intramedullary tumour spine surgery. Multimodality IONM has a high sensitivity and specificity. A guideline recommendation of IONM to be employed for high-risk spine cases was made. The different sections of the intraoperative checklist include surgery, anaesthetic and neurophysiology. The care pathway includes steps (1) initial clinical assessment, (2) pre-operative planning, (3) surgical/anaesthetic planning, (4) intra-operative management, and (5) post-operative management. CONCLUSIONS: This is the first evidence based comprehensive guideline and care pathway for ISCI using the GRADE methodology. This will facilitate a reduction in the incidence of ISCI and improved outcomes from this complication. We welcome the wide implementation and validation of these guidelines and care pathways in prospective, multicentre studies.

7.
Global Spine J ; 14(3_suppl): 223S-230S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526926

RESUMO

STUDY DESIGN: Narrative summary of the 2023 AO Spine-Praxis clinical practice guidelines for management in acute spinal cord injury (SCI). OBJECTIVES: The objective of this article is to summarize the key findings of the clinical practice guidelines for the optimal management of traumatic and intraoperative SCI (ISCI). This article will also highlight potential knowledge translation opportunities for each recommendation and discuss important knowledge gaps and areas of future research. METHODS: Systematic reviews were conducted according to accepted methodological standards to evaluate the current body of evidence and inform the guideline development process. The summarized evidence was reviewed by a multidisciplinary guidelines development group that consisted of international multidisciplinary stakeholders. The Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) approach was used to rate the certainty of the evidence for each critical outcome and the "evidence to recommendation" framework was used to formulate the final recommendations. RESULTS: The key recommendations regarding the timing of surgical decompression, hemodynamic management, and the prevention, diagnosis, and management of ISCI are summarized. While a strong recommendation was made for early surgery, further prospective research is required to define what constitutes sufficient surgical decompression, examine the role of ultra-early surgery, and assess the impact of early surgery in different SCI phenotypes, including central cord syndrome. Furthermore, additional investigation is required to evaluate the impact of mean arterial blood pressure targets on neurological recovery and to determine the utility of spinal cord perfusion pressure measurements. Finally, there is a need to examine the role of neuroprotective agents for the treatment of ISCI and to prospectively validate the new AO Spine-Praxis care pathway for the prevention, diagnosis, and management of ISCI. To optimize the translation of these guidelines into practice, important barriers to their implementation, particularly in underserved areas, need to be explored. Ultimately, these recommendations will help to establish more personalized approaches to care for SCI patients. CONCLUSIONS: The recommendations from the 2023 AO Spine-Praxis guidelines not only highlight the current best practice in the management of SCI, but reveal critical knowledge gaps and barriers to implementation that will help to guide further research efforts in SCI.

8.
Global Spine J ; 14(3_suppl): 150S-165S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526924

RESUMO

STUDY DESIGN: Scoping Review. OBJECTIVE: To review the literature and summarize information on checklists and algorithms for responding to intraoperative neuromonitoring (IONM) alerts and management of intraoperative spinal cord injuries (ISCIs). METHODS: MEDLINE® was searched from inception through January 26, 2022 as were sources of grey literature. We attempted to obtain guidelines and/or consensus statements from the following sources: American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM), American Academy of Neurology (AAN), American Clinical Neurophysiology Society, NASS (North American Spine Society), and other spine surgery organizations. RESULTS: Of 16 studies reporting on management strategies for ISCIs, two were publications of consensus meetings which were conducted according to the Delphi method and eight were retrospective cohort studies. The remaining six studies were narrative reviews that proposed intraoperative checklists and management strategies for IONM alerts. Of note, 56% of included studies focused only on patients undergoing spinal deformity surgery. Intraoperative considerations and measures taken in the event of an ISCI are divided and reported in three categories of i) Anesthesiologic, ii) Neurophysiological/Technical, and iii) Surgical management strategies. CONCLUSION: There is a paucity of literature on comparative effectiveness and harms of management strategies in response to an IONM alert and possible ISCI. There is a pressing need to develop a standardized checklist and care pathway to avoid and minimize the risk of postoperative neurologic sequelae.

9.
Global Spine J ; 14(3_suppl): 25S-37S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526928

RESUMO

STUDY DESIGN: An overview of the methods used to develop clinical practice guidelines (CPGs). OBJECTIVES: Acute spinal cord injury (SCI) and intraoperative SCI (ISCI) can have devastating physical and psychological consequences for patients and their families. To date, there are several studies that have discussed the diagnostic and management strategies for both SCI and ISCI. CPGs in SCI help to distill and translate the current evidence into actionable recommendations, standardize care across centers, optimize patient outcomes, and reduce costs and unnecessary interventions. Furthermore, they can be used by patients to assist in making decisions about certain treatments and by policy makers to inform allocation of resources. The objective of this article is to summarize the methods used to develop CPGs for the timing of surgery and hemodynamic management of acute SCI, as well as the identification and treatment of ISCI. METHODS: The CPGs were developed using standards established by the Institute of Medicine (now the National Academy of Medicine), the Guideline International Network and several other organizations. Systematic reviews were conducted according to accepted methodological standards (eg, Institute of Medicine, Agency for Healthcare Research and Quality and Patient-Centered Outcomes Research Institute) in order to summarize the current body of evidence and inform the guideline development process. Protocols for each guideline were created. A multidisciplinary guideline development group (GDG) was formed that included individuals living with SCI as well as clinicians from the broad range of specialties that encounter patients with SCI: spine or trauma surgeons, critical care physicians, rehabilitation specialists, neurologists, anesthesiologists and other healthcare professionals. Individuals living with SCI were also included in the GDG. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach was used to rate the certainty of the evidence for each critical outcome. The "evidence to recommendation" framework was then used to translate the evidence obtained from the systematic review to an actionable recommendation. This framework provides structure when assessing the body of evidence and considers several additional factors when rating the strength of the recommendation, including the magnitude of benefits and harms, patient preferences, resource use, health equities, acceptability and feasibility. Finally, the CPGs were appraised both internally and externally. RESULTS: The results of the CPGs for SCI are provided in separate articles in this focus issue. CONCLUSIONS: Development of these CPGs for SCI followed the methodology proposed by the Institute of Medicine the Guideline International Network and the GRADE Working Group. It is anticipated that these CPGs will assist clinicians implement the best evidence into practice and facilitate shared-decision making with patients.

10.
Global Spine J ; 14(3_suppl): 38S-57S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526929

RESUMO

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVE: Surgical decompression is a cornerstone in the management of patients with traumatic spinal cord injury (SCI); however, the influence of the timing of surgery on neurological recovery after acute SCI remains controversial. This systematic review aims to summarize current evidence on the effectiveness, safety, and cost-effectiveness of early (≤24 hours) or late (>24 hours) surgery in patients with acute traumatic SCI for all levels of the spine. Furthermore, this systematic review aims to evaluate the evidence with respect to the impact of ultra-early surgery (earlier than 24 hours from injury) on these outcomes. METHODS: A systematic search of the literature was performed using the MEDLINE database (PubMed), Cochrane database, and EMBASE. Two reviewers independently screened the citations from the search to determine whether an article satisfied predefined inclusion and exclusion criteria. For all key questions, we focused on primary studies with the least potential for bias and those that controlled for baseline neurological status and specified time from injury to surgery. Risk of bias of each article was assessed using standardized tools based on study design. Finally, the overall strength of evidence for the primary outcomes was assessed using the GRADE approach. Data were synthesized both qualitatively and quantitively using meta-analyses. RESULTS: Twenty-one studies met inclusion and exclusion criteria and formed the evidence base for this review update. Seventeen studies compared outcomes between patients treated with early (≤24 hours from injury) compared to late (>24 hours) surgical decompression. An additional 4 studies evaluated even earlier time frames: <4, <5, <8 or <12 hours. Based on moderate evidence, patients were 2 times more likely to recover by ≥ 2 grades on the ASIA Impairment Score (AIS) at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, moderate evidence suggested that patients receiving early decompression had an additional 4.50 (95% CI 1.70 to 7.29) point improvement on the ASIA motor score. With respect to administrative outcomes, there was low evidence that early decompression may decrease acute hospital length of stay. In terms of safety, there was moderate evidence that suggested the rate of major complications does not differ between patients undergoing early compared to late surgery. Furthermore, there was no difference in rates of mortality, surgical device-related complications, sepsis/systemic infection or neurological deterioration based on timing of surgery. Firm conclusions were not possible with respect to the impact of ultra-early surgery on neurological, functional or safety outcomes given the poor-quality studies, imprecision and the overlap in the time frames examined. CONCLUSIONS: This review provides an evidence base to support the update on clinical practice guidelines related to the timing of surgical decompression in acute SCI. Overall, the strength of evidence was moderate that early surgery (≤24 hours from injury) compared to late (>24 hours) results in clinically meaningful improvements in neurological recovery. Further studies are required to delineate the role of ultra-early surgery in patients with acute SCI.

11.
Global Spine J ; 14(3_suppl): 5S-9S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526930

RESUMO

STUDY DESIGN: Narrative overview and summary. OBJECTIVES: The objective of this introductory manuscript is to provide an overview of the effort that was undertaken to establish clinical practice guidelines for a number of important topics in spinal cord injury (SCI). These topics included: 1. The role and timing of surgical decompression after acute traumatic SCI; 2. The hemodynamic management of acute traumatic SCI; and 3. The definition, diagnosis, and management of intra-operative SCI. Here, we introduce the rationale for the guidelines, the methodology utilized, and summarize how the topics are addressed within various manuscripts of this Focus Issue. METHODS: The key clinical questions were defined using the PICO format for treatment reviews (patient; intervention; comparison; outcomes) or PPO format (patient, prognostic factor, outcomes) for risk factor review. Multi-disciplinary, international guideline development groups (GDGs) were established to evaluate and collate the available evidence in a rigorous, systematic manner, followed by a review of systematically obtained evidence within the framework of the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria and application of the Evidence to Decision process. Consensus meetings, using a modified Delphi approach, were held with the multidisciplinary, international GDGs using online video-conferencing technology and anonymous voting to develop the final recommendations for each of the topics addressed. All systematic review protocols followed PRISMA standards and were registered on PROSPERO; all potential conflicts were vetted in an open and transparent manner. The funders (AO Spine and Praxis Spinal Cord Institute) had no influence over editorial content or the guidelines process). RESULTS: Updated guidelines were established for the timing of surgical decompression after acute SCI, with surgical decompression within 24 hours of injury now "recommended" as a treatment option. Updated guidelines were also established for hemodynamic management, with an expanded target range for mean arterial pressure (MAP) of 75-80 to 90-95 mmHg for between 3 to 7 days post-injury now "suggested" as a treatment option. The available literature mandated scoping and systematic reviews on the topic of intra-operative SCI, and this resulted in manuscripts to address the definition, frequency, and risk factors, to define the role of intra-operative neuromonitoring, and to suggest an evidence-based care pathway for management. CONCLUSION: A rigorous process following GRADE standards was undertaken to review the available evidence and establish guideline recommendations around the role and timing of surgery in acute SCI, optimal hemodynamic management of acute SCI and the prevention, diagnosis and management of intraoperative SCI. This effort also identified key knowledge gaps and future directions for study, which will serve to refine these recommendations in the future.

12.
J Neurosurg Spine ; 40(2): 216-228, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976498

RESUMO

OBJECTIVE: Postoperative C5 palsy (C5P) is a known complication in cervical spine surgery. However, its exact pathophysiology is unclear. The authors aimed to provide a review of the current understanding of C5P by performing a comprehensive, systematic review of the existing literature and conducting a critical appraisal of existing evidence to determine the risk factors of C5P. METHODS: A systematic search of PubMed/MEDLINE (January 1, 2019, to July 2, 2021), EMBASE (inception to July 2, 2021), and Cochrane (inception to July 2, 2021) databases was conducted. Preestablished criteria were used to evaluate studies for inclusion. Studies that adjusted for one or more of the following factors were considered: preoperative foraminal diameter (FD) at C4/5, posterior spinal cord shift at C4/5, preoperative anterior-posterior diameter (APD) at C4/5, preoperative spinal cord rotation, and change in C2-7 Cobb angle. Studies were rated as good, fair, or poor based on the Quality in Prognosis Studies (QUIPS) tool. Random effects meta-analyses were done using methods outlined by Cochrane methodologists for pooling of prognostic studies. Overall quality (strength) of evidence was based on Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methods for prognostic studies. The protocol for this review was published on the PROSPERO (CRD264358) website. RESULTS: Of 303 potentially relevant citations of studies, 12 met the inclusion criteria set a priori. These works provide moderate-quality evidence that preoperative FD substantially increases the odds of C5P in patients undergoing posterior cervical surgery. Pooled estimates across 7 studies in which various surgical approaches were used indicate that the odds of C5P approximately triple for each millimeter decrease in preoperative FD (OR 3.05, 95% CI 2.07-4.49). Preoperative APD increases the odds of C5P, but the confidence is low. Across 3 studies, each using different surgical approaches, each millimeter decrease in preoperative APD was associated with a more than 2-fold increased odds of C5P (pooled OR 2.51, 95% CI 1.69-3.73). Confidence that there is an association with postoperative C5P and posterior spinal cord shift, change in sagittal Cobb angle, and preoperative spinal cord rotation is very low. CONCLUSIONS: The exact pathophysiological process resulting in postoperative C5P remains an enigma but there is a clear association with foraminal stenosis, especially when performing posterior procedures. C5P is also related to decreased APD but the association is less clear. The overall quality (strength) of evidence provided by the current literature is low to very low for most factors. Systematic review registration no.: CRD264358 (https://www.crd.york.ac.uk/prospero/).


Assuntos
Paralisia , Medula Espinal , Humanos , Paralisia/cirurgia , Medula Espinal/cirurgia , Fatores de Risco , Prognóstico , Vértebras Cervicais/cirurgia , Análise Multivariada , Descompressão Cirúrgica/métodos
13.
Global Spine J ; 11(1): 122-123, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33213207

RESUMO

Srivastava RN, Agrahari AK, Singh A, Chandra T, Raj S. Effectiveness of bone marrow-derived mononuclear stem cells for neurological recovery in participants with spinal cord injury: a randomized controlled trial. Asian J Transfus Sci. 2019;13(2):120-128.

14.
Global Spine J ; 11(8): 1281-1298, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33203241

RESUMO

STUDY DESIGN: Systematic review. OBJECTIVES: To systematically review, critically appraise and synthesize evidence on use of autologous stem cells sources for fusion in the lumbar spine. METHODS: A systematic search of PubMed/MEDLINE, EMBASE and ClinicalTrials.gov through February 20, 2020 was conducted comparing autologous cell grafts to other biologics for lumbar spine fusion. The focus was on studies comparing distinct patient groups. RESULTS: From 343 potentially relevant citations, 15 studies met the inclusion criteria set a priori. Seven studies compared distinct patient groups, with BMA being used in combination with allograft or autograft not as a standalone material. No economic evaluations were identified. Most observational studies were at moderately high risk of bias. When used for primary lumbar fusion, no statistical differences in outcomes or complications were seen between BMA+autograft/or +allograft compared to autograft/allograft alone. Compared with allograft, data from a RCT suggested statistically better fusion and lower complication rates with concentrated BMA+allograft. When used in revisions, no differences in outcomes were seen between BMA+allograft and either autograft or rh-BMP-2 but fusion rates were lower with BMA+allograft, leading to additional revision surgery. CONCLUSIONS: There was substantial heterogeneity across studies in patient populations, sample size, biologic combinations, and surgical characteristics making direct comparisons difficult. The overall quality of evidence for fusion rates and the safety of BMA in lumbar fusion procedures was considered very low, with studies being at moderately high or high risk of bias.

16.
Global Spine J ; 10(5): 667-673, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32677574

RESUMO

STUDY DESIGN: A systematic cross-sectional survey of systematic reviews (SRs). OBJECTIVE: To evaluate the methodological quality of spine surgery SRs published in 2018 using the updated AMSTAR 2 critical appraisal instrument. METHODS: We identified the PubMed indexed journals devoted to spine surgery research in 2018. All SRs of spine surgical interventions from those journals were critically appraised for quality independently by 2 reviewers using the AMSTAR 2 instrument. We calculated the percentage of SRs achieving a positive response for each AMSTAR 2 domain item and assessed the levels of confidence in the results of each SR. RESULTS: We identified 28 SRs from 4 journals that met our criteria for inclusion. Only 49.5% of the AMSTAR 2 domain items satisfied the AMSTAR 2 criteria. Critical domain items were satisfied less often (39.1%) compared with noncritical domain items (57.3%). Domain items most poorly reported include accounting for individual study risk of bias when interpreting results (14%), list and justification of excluded articles (18%), and an a priori establishment of methods prior to the review or registered protocol (18%). The overall confidence in the results was rated "low" in 2 SRs and "critically low" in 26. CONCLUSIONS: The credibility of a SR and its value to clinicians and policy makers are dependent on its methodological quality. This appraisal found significant methodological limitations in several critical domains, such that the confidence in the findings of these reviews is "critically low."

17.
Clin Spine Surg ; 32(6): 237-253, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30672748

RESUMO

STUDY DESIGN: This was a systematic review. OBJECTIVE: To review and synthesize information on subaxial lateral mass dimensions in order to determine the ideal starting point, trajectory, and size of a lateral mass screw. SUMMARY OF BACKGROUND DATA: The use of lateral mass instrumentation for posterior cervical decompression and fusion has become routine as these constructs have increased rigidity and fusion rates. METHODS: A systematic search of Medline and EMBASE was conducted. Studies that provided subaxial cervical lateral mass measurements, distance to the facet, vertebral artery and neuroforamen and facet angle made either directly (eg, cadaver specimen) or from patient imaging were considered for inclusion. Pooled estimates of mean dimensions were reported with corresponding 95% confidence intervals. Stratified analysis based on level, sex, imaging plane, source (cadaver or imaging), and measurement method was done. RESULTS: Of the 194 citations identified, 12 cadaver and 10 imaging studies were included. Pooled estimates for C3-C6 were generally consistent for lateral mass height (12.1 mm), width (12.0 mm), depth (10.8 mm), distance to the transverse foramen (11.8 mm), and distance to the nerve. C7 dimensions were most variable. Small sex-based differences in dimensions were noted for height (1.2 mm), width (1.3 mm), depth (0.43 mm), transverse foramen distance (0.9 mm), and nerve distance (0.3-0.8 mm). No firm conclusions regarding differences between measurements made on cadavers and those based on patient computed tomographic images are possible; findings were not consistent across dimensions. The overall strength of evidence is considered very low for all findings. CONCLUSIONS: Although estimates of height, width, and depth were generally consistent for C3-C6, C7 dimensions were variable. Small sex differences in dimensions may suggest that surgeons should use a slightly smaller screw in female patients. Firm conclusions regarding facet angulation, source of measurement, and method of measurement were not possible.


Assuntos
Vértebras Cervicais/patologia , Adolescente , Fenômenos Biomecânicos , Humanos , Articulação Zigapofisária/patologia
18.
Global Spine J ; 7(3 Suppl): 195S-202S, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29164024

RESUMO

OBJECTIVE: To develop recommendations on the timing of surgical decompression in patients with traumatic spinal cord injury (SCI) and central cord syndrome. METHODS: A systematic review of the literature was conducted to address key relevant questions. A multidisciplinary guideline development group used this information, along with their clinical expertise, to develop recommendations for the timing of surgical decompression in patients with SCI and central cord syndrome. Based on GRADE, a strong recommendation is worded as "we recommend," whereas a weak recommendation is presented as "we suggest." RESULTS: Conclusions from the systematic review included (1) isolated studies reported statistically significant and clinically important improvements following early decompression at 6 months and following discharge from inpatient rehabilitation; (2) in one study on acute central cord syndrome without instability, a marginally significant improvement in total motor scores was reported at 6 and 12 months in patients managed with early versus late surgery; and (3) there were no significant differences in length of acute care/rehabilitation stay or in rates of complications between treatment groups. Our recommendations were: "We suggest that early surgery be considered as a treatment option in adult patients with traumatic central cord syndrome" and "We suggest that early surgery be offered as an option for adult acute SCI patients regardless of level." Quality of evidence for both recommendations was considered low. CONCLUSIONS: These guidelines should be implemented into clinical practice to improve outcomes in patients with acute SCI and central cord syndrome by promoting standardization of care, decreasing the heterogeneity of management strategies, and encouraging clinicians to make evidence-informed decisions.

19.
Global Spine J ; 7(3 Suppl): 70S-83S, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29164035

RESUMO

STUDY DESIGN: Guideline development. OBJECTIVES: The objective of this study is to develop guidelines that outline how to best manage (1) patients with mild, moderate, and severe myelopathy and (2) nonmyelopathic patients with evidence of cord compression with or without clinical symptoms of radiculopathy. METHODS: Five systematic reviews of the literature were conducted to synthesize evidence on disease natural history; risk factors of disease progression; the efficacy, effectiveness, and safety of nonoperative and surgical management; the impact of preoperative duration of symptoms and myelopathy severity on treatment outcomes; and the frequency, timing, and predictors of symptom development. A multidisciplinary guideline development group used this information, and their clinical expertise, to develop recommendations for the management of degenerative cervical myelopathy (DCM). RESULTS: Our recommendations were as follows: (1) "We recommend surgical intervention for patients with moderate and severe DCM." (2) "We suggest offering surgical intervention or a supervised trial of structured rehabilitation for patients with mild DCM. If initial nonoperative management is pursued, we recommend operative intervention if there is neurological deterioration and suggest operative intervention if the patient fails to improve." (3) "We suggest not offering prophylactic surgery for non-myelopathic patients with evidence of cervical cord compression without signs or symptoms of radiculopathy. We suggest that these patients be counseled as to potential risks of progression, educated about relevant signs and symptoms of myelopathy, and be followed clinically." (4) "Non-myelopathic patients with cord compression and clinical evidence of radiculopathy with or without electrophysiological confirmation are at a higher risk of developing myelopathy and should be counselled about this risk. We suggest offering either surgical intervention or nonoperative treatment consisting of close serial follow-up or a supervised trial of structured rehabilitation. In the event of myelopathic development, the patient should be managed according to the recommendations above." CONCLUSIONS: These guidelines will promote standardization of care for patients with DCM, decrease the heterogeneity of management strategies and encourage clinicians to make evidence-informed decisions.

20.
Global Spine J ; 7(3 Suppl): 95S-115S, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29164038

RESUMO

STUDY DESIGN: Systematic review. OBJECTIVE: To conduct a systematic review and synthesis of the literature to assess the comparative effectiveness, safety, and cost-effectiveness of early (≤24 hours) versus late decompression (>24 hours) in adults with acute spinal cord injury (SCI). METHODS: A systematic search was conducted of Medline, EMBASE, the Cochrane Collaboration Library, and Google Scholar to identify studies published through November 6, 2014. Studies published in any language, in humans, and with an abstract were considered for inclusion. Included studies were critically appraised and the overall strength of evidence was determined using methods proposed by the Grading of Recommendation Assessment, Development and Evaluation working group. RESULTS: The search yielded 449 potentially relevant citations. Sixteen additional primary studies were identified through other sources. Six studies met inclusion criteria. All but 2 studies were considered to have moderately high risk of bias. Across studies and injury levels, the impact of early surgical decompression (≤24 hours) on clinically important improvement in neurological status was variable. Isolated studies reported statistically significant and clinically important improvements at 6 months (cervical injury, low strength of evidence) and following discharge from inpatient rehabilitation (all levels, very low strength of evidence) but not at other time points; another study observed a statistically significant 6 point improvement in ASIA Impairment Scale (AIS) among patients with AIS B, C, or D, but not for those with AIS A (very low strength of evidence). In one study of acute central cord syndrome without instability, a clinically and statistically meaningful improvement in total motor scores was reported at 6 and 12 months in patients treated early (versus late). There were, however, no significant differences in AIS improvement between early and late surgical groups at 6- or 12-months (very low strength of evidence). One of 3 studies found a shorter length of hospital stay associated with early surgical decompression. Of 3 studies reporting on safety, no significant differences in rates of complications (including mortality, neurologic deterioration, pneumonia or pressure ulcers) were noted between early and late decompression groups. CONCLUSIONS: Results surrounding the efficacy of early versus late decompressive surgery, as well as the quality of evidence available, were variable depending on the level of SCI, timing of follow-up, and specific outcome considered. Existing evidence supports improved neurological recovery among cervical SCI patients undergoing early surgery; however, evidence regarding remaining SCI populations and clinical outcomes was inconsistent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA