Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 37(11): 110125, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910911

RESUMO

Plants tailor immune responses to defend against pathogens with different lifestyles. In this process, antagonism between the immune hormones salicylic acid (SA) and jasmonic acid (JA) optimizes transcriptional signatures specifically to the attacker encountered. Antagonism is controlled by the transcription cofactor NPR1. The indispensable role of NPR1 in activating SA-responsive genes is well understood, but how it functions as a repressor of JA-responsive genes remains unclear. Here, we demonstrate that SA-induced NPR1 is recruited to JA-responsive promoter regions that are co-occupied by a JA-induced transcription complex consisting of the MYC2 activator and MED25 Mediator subunit. In the presence of SA, NPR1 physically associates with JA-induced MYC2 and inhibits transcriptional activation by disrupting its interaction with MED25. Importantly, NPR1-mediated inhibition of MYC2 is a major immune mechanism for suppressing pathogen virulence. Thus, NPR1 orchestrates the immune transcriptome not only by activating SA-responsive genes but also by acting as a corepressor of JA-responsive MYC2.


Assuntos
Aminoácidos/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Indenos/toxicidade , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Anti-Infecciosos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Correpressoras , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Pseudomonas syringae/química , Ácido Salicílico/farmacologia , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 116(34): 17090-17095, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371496

RESUMO

SUMOylation, the covalent attachment of the small ubiquitin-like modifier (SUMO) to target proteins, is emerging as a key modulator of eukaryotic immune function. In plants, a SUMO1/2-dependent process has been proposed to control the deployment of host defense responses. The molecular mechanism underpinning this activity remains to be determined, however. Here we show that increasing nitric oxide levels following pathogen recognition promote S-nitrosylation of the Arabidopsis SUMO E2 enzyme, SCE1, at Cys139. The SUMO-conjugating activities of both SCE1 and its human homolog, UBC9, were inhibited following this modification. Accordingly, mutation of Cys139 resulted in increased levels of SUMO1/2 conjugates, disabled immune responses, and enhanced pathogen susceptibility. Our findings imply that S-nitrosylation of SCE1 at Cys139 enables NO bioactivity to drive immune activation by relieving SUMO1/2-mediated suppression. The control of global SUMOylation is thought to occur predominantly at the level of each substrate via complex local machineries. Our findings uncover a parallel and complementary mechanism by suggesting that total SUMO conjugation may also be regulated directly by SNO formation at SCE1 Cys139. This Cys is evolutionary conserved and specifically S-nitrosylated in UBC9, implying that this immune-related regulatory process might be conserved across phylogenetic kingdoms.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Cisteína Endopeptidases/imunologia , Óxido Nítrico/imunologia , Enzimas de Conjugação de Ubiquitina/imunologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína Endopeptidases/genética , Humanos , Óxido Nítrico/genética , Enzimas de Conjugação de Ubiquitina/genética
4.
New Phytol ; 211(2): 516-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26916092

RESUMO

Nitric oxide (NO) is emerging as a key regulator of diverse plant cellular processes. A major route for the transfer of NO bioactivity is S-nitrosylation, the addition of an NO moiety to a protein cysteine thiol forming an S-nitrosothiol (SNO). Total cellular levels of protein S-nitrosylation are controlled predominantly by S-nitrosoglutathione reductase 1 (GSNOR1) which turns over the natural NO donor, S-nitrosoglutathione (GSNO). In the absence of GSNOR1 function, GSNO accumulates, leading to dysregulation of total cellular S-nitrosylation. Here we show that endogenous NO accumulation in Arabidopsis, resulting from loss-of-function mutations in NO Overexpression 1 (NOX1), led to disabled Resistance (R) gene-mediated protection, basal resistance and defence against nonadapted pathogens. In nox1 plants both salicylic acid (SA) synthesis and signalling were suppressed, reducing SA-dependent defence gene expression. Significantly, expression of a GSNOR1 transgene complemented the SNO-dependent phenotypes of paraquat resistant 2-1 (par2-1) plants but not the NO-related characters of the nox1-1 line. Furthermore, atgsnor1-3 nox1-1 double mutants supported greater bacterial titres than either of the corresponding single mutants. Our findings imply that GSNO and NO, two pivotal redox signalling molecules, exhibit additive functions and, by extension, may have distinct or overlapping molecular targets during both immunity and development.


Assuntos
Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Imunidade Vegetal , S-Nitrosoglutationa/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Homeostase , Modelos Biológicos , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia
5.
Nat Commun ; 5: 5401, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25384398

RESUMO

Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.


Assuntos
Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , S-Nitrosotióis/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Arabidopsis/metabolismo , Glutationa Redutase/metabolismo , Homeostase/fisiologia , Modelos Biológicos , Nitratos/metabolismo , Oxirredução
6.
Antioxid Redox Signal ; 19(9): 990-7, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23725342

RESUMO

SIGNIFICANCE: Activation of immune responses in plants is associated with a parallel burst of both reactive oxygen intermediates (ROIs) and nitric oxide (NO). The mechanisms by which these small redox-active molecules are synthesized and their signaling functions are critical for plants to defend themselves against pathogen infection. RECENT ADVANCES: The synthesis of apoplastic ROIs by plants after pathogen recognition has long been attributed to membrane-bound NAPDH oxidases. However, the emerging data suggest a role for other enzymes in various subcellular locations in ROI production after defense activation. It is becoming widely appreciated that NO exerts its biochemical function through the S-nitrosylation of reactive cysteine thiols on target proteins, constituting a key post-translational modification. Recent evidence suggests that S-nitrosylation of specific defense-related proteins regulates their activity. CRITICAL ISSUES: The source(s) of NO production after pathogen recognition remain(s) poorly understood. Some NO synthesis can be attributed to the activity of nitrate reductase but to date, no nitric oxide synthase (NOS) has been identified in higher plants. However, the signaling functions of S-nitrosylation are becoming more apparent and thus dissecting the molecular machinery underpinning this redox-based modification is vital to further our understanding of plant disease resistance. FUTURE DIRECTIONS: In addition to identifying new contributors to the oxidative burst, the discovery of an NOS in higher plants would significantly move the field forward. Since S-nitrosylation has now been confirmed to play various roles in immune signaling, this redox-based modification is a potential target to exploit for improving disease resistance in crop species.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/etiologia , Plantas/metabolismo , Transdução de Sinais , Aldeído Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Clin Infect Dis ; 46(3): 467-71, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18177224

RESUMO

BACKGROUND: S-adenosylmethionine (AdoMet) is a key molecule involved in methylation reactions and polyamine synthesis. Pneumocystis carinii are unable to synthesize this molecule and have been shown to scavenge this metabolic intermediate from the plasma of rats during active infection. A prior study involving humans strongly suggested that low levels of plasma AdoMet are sensitive and specific indicators of acute infection. METHODS: From March 2004 through January 2006, we collected plasma AdoMet levels from patients with human immunodeficiency virus (HIV) infection and either confirmed Pneumocystis carinii pneumonia (PCP), confirmed pulmonary tuberculosis, or confirmed bacterial pneumonia. We compared levels in patients with PCP with those in patients with other diseases and also monitored changes in levels during treatment of PCP. RESULTS: Initial AdoMet levels were significantly lower in patients with PCP, and there was no overlap between the groups. Among patients with PCP, levels of AdoMet increased with successful treatment. CONCLUSIONS: Measurement of plasma AdoMet levels in patients with HIV infection who have pulmonary infections can identify those with PCP.


Assuntos
Infecções por HIV/sangue , Infecções por HIV/microbiologia , Pneumocystis carinii/isolamento & purificação , Pneumonia por Pneumocystis/sangue , Pneumonia por Pneumocystis/virologia , S-Adenosilmetionina/sangue , Adulto , Humanos , Estudos Prospectivos , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA