Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(24): 31792-31802, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33611733

RESUMO

Regional estimates of VOC fluxes focus largely on emissions from the canopy and omit potential contributions from the forest floor including soil, litter and understorey vegetation. Here, we measured monoterpene emissions every 2 months over 2 years from logged tropical forest and oil palm plantation floor in Malaysian Borneo using static flux chambers. The main emitted monoterpenes were α-pinene, ß-pinene and d-limonene. The amount of litter present was the strongest indicator for higher monoterpene fluxes. Mean α-pinene fluxes were around 2.5-3.5 µg C m-2 h-1 from the forest floor with occasional fluxes exceeding 100 µg C m-2 h-1. Fluxes from the oil palm plantation, where hardly any litter was present, were lower (on average 0.5-2.9 µg C m-2 h-1) and only higher when litter was present. All other measured monoterpenes were emitted at lower rates. No seasonal trends could be identified for all monoterpenes and mean fluxes from both forest and plantation floor were ~ 100 times smaller than canopy emission rates reported in the literature. Occasional spikes of higher emissions from the forest floor, however, warrant further investigation in terms of underlying processes and their contribution to regional scale atmospheric fluxes.


Assuntos
Florestas , Monoterpenos , Bornéu , Malásia , Monoterpenos/análise , Solo
2.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3196-209, 2011 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-22006962

RESUMO

This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.


Assuntos
Agricultura , Arecaceae/química , Atmosfera/química , Gases/química , Árvores/química , Derivados de Alilbenzenos , Altitude , Anisóis/química , Arecaceae/fisiologia , Bornéu , Butadienos/química , Carbono/química , Dióxido de Carbono/química , Transferência de Energia , Hemiterpenos/química , Malásia , Metano/química , Óxidos de Nitrogênio/química , Ozônio/química , Pentanos/química , Fotossíntese , Solo/química , Temperatura , Árvores/fisiologia , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA