Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Essays Biochem ; 67(6): 957-965, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37503576

RESUMO

Immunopeptidomics is the survey of all peptides displayed on a cell or tissue when bound to human leukocyte antigen (HLA) molecules using tandem mass spectrometry. When attempting to determine the targets of tumour-specific CD8+ T cells, a survey of the potential ligands in tumour tissues is invaluable, and, in comparison with in-silico predictions, provides greater certainty of the existence of individual epitopes, as immunopeptidomics-confirmed CD8+ T-cell epitopes are known to be immunogenic, and direct observation should avoid the risk of autoreactivity which could arise following immunisation with structural homologues. The canonical sources of CD8+ T-cell tumour specific epitopes, such as tumour associated antigens, may be well conserved between patients and tumour types, but are often only weakly immunogenic. Direct observation of tumour-specific neoantigens by immunopeptidomics is rare, although valuable. Thus, there has been increasing interest in the non-canonical origins of tumour-reactive CD8+ T-cell epitopes, such as those arising from proteasomal splicing events, translational/turnover defects and alternative open reading frame reads. Such epitopes can be identified in silico, although validation is more challenging. Non-self CD8+ T-cell epitopes such as viral epitopes may be useful in certain cancer types with known viral origins, however these have been relatively unexplored with immunopeptidomics to date, possibly due to the paucity of source viral proteins in tumour tissues. This review examines the latest evidence for canonical, non-canonical and non-human CD8+ T-cell epitopes identified by immunopeptidomics, and concludes that the relative contribution for each of these sources to anti-tumour CD8+ T-cell reactivity is currently uncertain.


Assuntos
Epitopos de Linfócito T , Neoplasias , Humanos , Epitopos de Linfócito T/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/metabolismo , Antígenos HLA/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo
2.
Brain Behav Immun ; 111: 249-258, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146653

RESUMO

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.


Assuntos
Asma , Interleucina-6 , Humanos , Asma/complicações , Ansiedade , Comorbidade , Inflamação/complicações , Biomarcadores
3.
Thorax ; 78(7): 682-689, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36808085

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a debilitating, progressive disease with a median survival time of 3-5 years. Diagnosis remains challenging and disease progression varies greatly, suggesting the possibility of distinct subphenotypes. METHODS AND RESULTS: We analysed publicly available peripheral blood mononuclear cell expression datasets for 219 IPF, 411 asthma, 362 tuberculosis, 151 healthy, 92 HIV and 83 other disease samples, totalling 1318 patients. We integrated the datasets and split them into train (n=871) and test (n=477) cohorts to investigate the utility of a machine learning model (support vector machine) for predicting IPF. A panel of 44 genes predicted IPF in a background of healthy, tuberculosis, HIV and asthma with an area under the curve of 0.9464, corresponding to a sensitivity of 0.865 and a specificity of 0.89. We then applied topological data analysis to investigate the possibility of subphenotypes within IPF. We identified five molecular subphenotypes of IPF, one of which corresponded to a phenotype enriched for death/transplant. The subphenotypes were molecularly characterised using bioinformatic and pathway analysis tools identifying distinct subphenotype features including one which suggests an extrapulmonary or systemic fibrotic disease. CONCLUSIONS: Integration of multiple datasets, from the same tissue, enabled the development of a model to accurately predict IPF using a panel of 44 genes. Furthermore, topological data analysis identified distinct subphenotypes of patients with IPF which were defined by differences in molecular pathobiology and clinical characteristics.


Assuntos
Asma , Infecções por HIV , Fibrose Pulmonar Idiopática , Humanos , Leucócitos Mononucleares , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/diagnóstico , Fenótipo
4.
Nat Commun ; 14(1): 151, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631478

RESUMO

Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.


Assuntos
Anexina A1 , Polaridade Celular , Células Epiteliais , Fuso Acromático , Animais , Humanos , Camundongos , Anexina A1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , Mamíferos/metabolismo , Morfogênese , Fuso Acromático/genética , Fuso Acromático/metabolismo
5.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36395058

RESUMO

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Teste para COVID-19 , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Estudos Prospectivos , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade , Peptídeos
6.
Immunology ; 168(3): 420-431, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36111495

RESUMO

Oesophageal adenocarcinoma (OAC) has a relatively poor long-term survival and limited treatment options. Promising targets for immunotherapy are short peptide neoantigens containing tumour mutations, presented to cytotoxic T-cells by human leucocyte antigen (HLA) molecules. Despite an association between putative neoantigen abundance and therapeutic response across cancers, immunogenic neoantigens are challenging to identify. Here we characterized the mutational and immunopeptidomic landscapes of tumours from a cohort of seven patients with OAC. We directly identified one HLA-I presented neoantigen from one patient, and report functional T-cell responses from a predicted HLA-II neoantigen in a second patient. The predicted class II neoantigen contains both HLA I and II binding motifs. Our exploratory observations are consistent with previous neoantigen studies in finding that neoantigens are rarely directly observed, and an identification success rate following prediction in the order of 10%. However, our identified putative neoantigen is capable of eliciting strong T-cell responses, emphasizing the need for improved strategies for neoantigen identification.


Assuntos
Adenocarcinoma , Antígenos de Neoplasias , Humanos , Antígenos de Neoplasias/genética , Antígenos de Histocompatibilidade Classe I , Linfócitos T Citotóxicos , Antígenos HLA , Antígenos de Histocompatibilidade Classe II , Imunoterapia
7.
Front Immunol ; 13: 988685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203591

RESUMO

Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information. Methods: Gene expression of whole blood obtained at the point of admission from a cohort of 78 patients hospitalised with COVID-19 during the first wave was measured by high resolution RNA sequencing. Gene signatures predictive of admission to Intensive Care Unit were identified and tested using machine learning and topological data analysis, TopMD. Results: The best gene expression signature predictive of ICU admission was defined using topological data analysis with an accuracy: 0.72 and ROC AUC: 0.76. The gene signature was primarily based on differentially activated pathways controlling epidermal growth factor receptor (EGFR) presentation, Peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and Transforming growth factor beta (TGF-ß) signalling. Conclusions: Gene expression signatures from blood taken at the point of admission to hospital predicted ICU admission of treatment naïve patients with COVID-19.


Assuntos
COVID-19 , COVID-19/genética , Receptores ErbB , Expressão Gênica , Humanos , Unidades de Terapia Intensiva , PPAR alfa , Pandemias , Fator de Crescimento Transformador beta
8.
J Transl Med ; 20(1): 342, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907883

RESUMO

BACKGROUND: NAFLD and NASH are emerging as primary causes of chronic liver disease, indicating a need for an effective treatment. Mutaflor® probiotic, a microbial treatment of interest, was effective in sustaining remission in ulcerative colitis patients. OBJECTIVE: To construct a genetic-epigenetic network linked to HSC signaling as a modulator of NAFLD/NASH pathogenesis, then assess the effects of Mutaflor® on this network. METHODS: First, in silico analysis was used to construct a genetic-epigenetic network linked to HSC signaling. Second, an investigation using rats, including HFHSD induced NASH and Mutaflor® treated animals, was designed. Experimental procedures included biochemical and histopathologic analysis of rat blood and liver samples. At the molecular level, the expression of genetic (FOXA2, TEAD2, and LATS2 mRNAs) and epigenetic (miR-650, RPARP AS-1 LncRNA) network was measured by real-time PCR. PCR results were validated with immunohistochemistry (α-SMA and LATS2). Target effector proteins, IL-6 and TGF-ß, were estimated by ELISA. RESULTS: Mutaflor® administration minimized biochemical and histopathologic alterations caused by NAFLD/NASH. HSC activation and expression of profibrogenic IL-6 and TGF-ß effector proteins were reduced via inhibition of hedgehog and hippo pathways. Pathways may have been inhibited through upregulation of RPARP AS-1 LncRNA which in turn downregulated the expression of miR-650, FOXA2 mRNA and TEAD2 mRNA and upregulated LATS2 mRNA expression. CONCLUSION: Mutaflor® may slow the progression of NAFLD/NASH by modulating a genetic-epigenetic network linked to HSC signaling. The probiotic may be a useful modality for the prevention and treatment of NAFLD/NASH.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Probióticos , RNA Longo não Codificante , Animais , Células Estreladas do Fígado , Interleucina-6/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Probióticos/farmacologia , Probióticos/uso terapêutico , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo
9.
Genes Dis ; 9(1): 41-50, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35005106

RESUMO

Ubiquitin-specific protease (USP7), also known as Herpesvirus-associated ubiquitin-specific protease (HAUSP), is a deubiquitinase. There has been significant recent attention on USP7 following the discovery that USP7 is a key regulator of the p53-MDM2 pathway. The USP7 protein is 130 kDa in size and has multiple domains which bind to a diverse set of proteins. These interactions mediate key developmental and homeostatic processes including the cell cycle, immune response, and modulation of transcription factor and epigenetic regulator activity and localization. USP7 also promotes carcinogenesis through aberrant activation of the Wnt signalling pathway and stabilization of HIF-1α. These findings have shown that USP7 may induce tumour progression and be a therapeutic target. Together with interest in developing USP7 as a target, several studies have defined new protein interactions and the regulatory networks within which USP7 functions. In this review, we focus on the protein interactions of USP7 that are most important for its cancer-associated roles.

10.
PLoS One ; 16(11): e0246707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34739494

RESUMO

Glycogen-specific kinase (GSK3ß) is an integral regulator of the Wnt signalling pathway as well as many other diverse signalling pathways and processes. Dys-regulation of GSK3ß is implicated in many different pathologies, including neurodegenerative disorders as well as many different tumour types. In the context of tumour development, GSK3ß has been shown to play both oncogenic and tumour suppressor roles, depending upon tissue, signalling environment or disease progression. Although multiple substrates of the GSK3ß kinase have been identified, the wider protein networks within which GSK3ß participates are not well known, and the consequences of these interactions not well understood. In this study, LC-MS/MS expression analysis was performed using knockout GSK3ß colorectal cancer cells and isogenic controls in colorectal cancer cell lines carrying dominant stabilizing mutations of ß-catenin. Consistent with the role of GSK3ß, we found that ß-catenin levels and canonical Wnt activity are unaffected by knockout of GSK3ß and therefore used this knockout cell model to identify other processes in which GSK3ß is implicated. Quantitative proteomic analysis revealed perturbation of proteins involved in cell-cell adhesion, and we characterized the phenotype and altered proteomic profiles associated with this. We also characterized the perturbation of metabolic pathways resulting from GSK3ß knockout and identified defects in glycogen metabolism. In summary, using a precision colorectal cancer cell-line knockout model with constitutively activated ß-catenin we identified several of the diverse pathways and processes associated with GSK3ß function.


Assuntos
Adesão Celular/genética , Neoplasias Colorretais/genética , Glicogênio Sintase Quinase 3 beta/genética , Redes e Vias Metabólicas/genética , Via de Sinalização Wnt/fisiologia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteômica
11.
PLoS Pathog ; 17(11): e1010033, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780568

RESUMO

Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell's ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers.


Assuntos
Doenças dos Animais/patologia , Diferenciação Celular , Doenças Transmissíveis/patologia , Neoplasias Faciais/veterinária , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Células de Schwann/patologia , Doenças dos Animais/genética , Doenças dos Animais/metabolismo , Animais , Variação Biológica da População , Doenças Transmissíveis/genética , Doenças Transmissíveis/metabolismo , Neoplasias Faciais/classificação , Perfilação da Expressão Gênica , Marsupiais , Proteoma/análise , Células de Schwann/metabolismo , Transcriptoma
12.
J Biol Chem ; 297(3): 101096, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34418430

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic lung disease with a median survival of 2 to 4 years. Injury to and/or dysfunction of the alveolar epithelium is strongly implicated in IPF disease initiation, but the factors that determine whether fibrosis progresses rather than normal tissue repair occurs remain poorly understood. We previously demonstrated that zinc finger E-box-binding homeobox 1-mediated epithelial-mesenchymal transition in human alveolar epithelial type II (ATII) cells augments transforming growth factor-ß-induced profibrogenic responses in underlying lung fibroblasts via paracrine signaling. Here, we investigated bidirectional epithelial-mesenchymal crosstalk and its potential to drive fibrosis progression. RNA-Seq of lung fibroblasts exposed to conditioned media from ATII cells undergoing RAS-induced epithelial-mesenchymal transition identified many differentially expressed genes including those involved in cell migration and extracellular matrix regulation. We confirmed that paracrine signaling between RAS-activated ATII cells and fibroblasts augmented fibroblast recruitment and demonstrated that this involved a zinc finger E-box-binding homeobox 1-tissue plasminogen activator axis. In a reciprocal fashion, paracrine signaling from transforming growth factor-ß-activated lung fibroblasts or IPF fibroblasts induced RAS activation in ATII cells, at least partially through the secreted protein acidic and rich in cysteine, which may signal via the epithelial growth factor receptor via epithelial growth factor-like repeats. Together, these data identify that aberrant bidirectional epithelial-mesenchymal crosstalk in IPF drives a chronic feedback loop that maintains a wound-healing phenotype and provides self-sustaining profibrotic signals.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Fibrose Pulmonar Idiopática/fisiopatologia , Movimento Celular , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/fisiopatologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Masculino , Cultura Primária de Células , Fibrose Pulmonar/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
13.
Front Mol Biosci ; 8: 595712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869273

RESUMO

Alveolar type II (ATII) epithelial cells function as stem cells, contributing to alveolar renewal, repair and cancer. Therefore, they are a highly relevant model for studying a number of lung diseases, including acute injury, fibrosis and cancer, in which signals transduced by RAS and transforming growth factor (TGF)-ß play critical roles. To identify downstream molecular events following RAS and/or TGF-ß activation, we performed proteomic analysis using a quantitative label-free approach (LC-HDMSE) to provide in-depth proteome coverage and estimates of protein concentration in absolute amounts. Data are available via ProteomeXchange with identifier PXD023720. We chose ATIIER:KRASV12 as an experimental cell line in which RAS is activated by adding 4-hydroxytamoxifen (4-OHT). Proteomic analysis of ATII cells treated with 4-OHT or TGF-ß demonstrated that RAS activation induces an epithelial-mesenchymal transition (EMT) signature. In contrast, under the same conditions, activation of TGF-ß signaling alone only induces a partial EMT. EMT is a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties, and is involved in embryonic development, wound healing, fibrosis and cancer metastasis. Thus, these results could help to focus research on the identification of processes that are potentially driving EMT-related human disease.

15.
Immunology ; 163(2): 169-184, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33460454

RESUMO

Transmissible cancers are malignant cells that can spread between individuals of a population, akin to both a parasite and a mobile graft. The survival of the Tasmanian devil, the largest remaining marsupial carnivore, is threatened by the remarkable emergence of two independent lineages of transmissible cancer, devil facial tumour (DFT) 1 and devil facial tumour 2 (DFT2). To aid the development of a vaccine and to interrogate how histocompatibility barriers can be overcome, we analysed the peptides bound to major histocompatibility complex class I (MHC-I) molecules from Tasmanian devil cells and representative cell lines of each transmissible cancer. Here, we show that DFT1 + IFN-γ and DFT2 cell lines express a restricted repertoire of MHC-I allotypes compared with fibroblast cells, potentially reducing the breadth of peptide presentation. Comparison of the peptidomes from DFT1 + IFNγ, DFT2 and host fibroblast cells demonstrates a dominant motif, despite differences in MHC-I allotypes between the cell lines, with preference for a hydrophobic leucine residue at position 3 and position Ω of peptides. DFT1 and DFT2 both present peptides derived from neural proteins, which reflects a shared cellular origin that could be exploited for vaccine design. These results suggest that polymorphisms in MHC-I molecules between tumours and host can be 'hidden' by a common peptide motif, providing the potential for permissive passage of infectious cells and demonstrating complexity in mammalian histocompatibility barriers.


Assuntos
Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Neoplasias Faciais/imunologia , Imunoterapia/métodos , Marsupiais/imunologia , Células Neoplásicas Circulantes/patologia , Peptídeos/metabolismo , Motivos de Aminoácidos/genética , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/genética , Polimorfismo Genético , Ligação Proteica
16.
Nat Genet ; 53(2): 205-214, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432184

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Células Epiteliais/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Chlorocebus aethiops , Éxons , Células HEK293 , Humanos , Interferons/imunologia , Ligação Proteica , Isoformas de Proteínas/genética , Sítios de Splice de RNA , RNA-Seq , Sistema Respiratório/citologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Transcriptoma , Regulação para Cima , Células Vero
17.
Toxicol Sci ; 180(1): 136-147, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33372950

RESUMO

Skin sensitization following the covalent modification of proteins by low molecular weight chemicals (haptenation) is mediated by cytotoxic T lymphocyte (CTL) recognition of human leukocyte antigen (HLA) molecules presented on the surface of almost all nucleated cells. There exist 3 nonmutually exclusive hypotheses for how haptens mediate CTL recognition: direct stimulation by haptenated peptides, hapten modification of HLA leading to an altered HLA-peptide repertoire, or a hapten altered proteome leading to an altered HLA-peptide repertoire. To shed light on the mechanism underpinning skin sensitization, we set out to utilize proteomic analysis of keratinocyte presented antigens following exposure to 2,4-dinitrochlorobenzene (DNCB). We show that the following DNCB exposure, cultured keratinocytes present cysteine haptenated (dinitrophenylated) peptides in multiple HLA molecules. In addition, we find that one of the DNCB modified peptides derives from the active site of cytosolic glutathione-S transferase-ω. These results support the current view that a key mechanism of skin sensitization is stimulation of CTLs by haptenated peptides. Data are available via ProteomeXchange with identifier PXD021373.


Assuntos
Dinitroclorobenzeno , Células HaCaT , Haptenos/toxicidade , Humanos , Proteômica , Linfócitos T Citotóxicos
18.
Cell Death Dis ; 11(11): 1001, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33221821

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer that lacks the oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, making it difficult to target therapeutically. Targeting synthetic lethality is an alternative approach for cancer treatment. TNBC shows frequent loss of phosphatase and tensin homologue (PTEN) expression, which is associated with poor prognosis and treatment response. To identify PTEN synthetic lethal interactions, TCGA analysis coupled with a whole-genome siRNA screen in isogenic PTEN-negative and -positive cells were performed. Among the candidate genes essential for the survival of PTEN-inactive TNBC cells, WDHD1 (WD repeat and high-mobility group box DNA-binding protein 1) expression was increased in the low vs. high PTEN TNBC samples. It was also the top hit in the siRNA screen and its knockdown significantly inhibited cell viability in PTEN-negative cells, which was further validated in 2D and 3D cultures. Mechanistically, WDHD1 is important to mediate a high demand of protein translation in PTEN-inactive TNBC. Finally, the importance of WDHD1 in TNBC was confirmed in patient samples obtained from the TCGA and tissue microarrays with clinic-pathological information. Taken together, as an essential gene for the survival of PTEN-inactive TNBC cells, WDHD1 could be a potential biomarker or a therapeutic target for TNBC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
19.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142795

RESUMO

Formalin-fixed paraffin embedded (FFPE) clinical tissues represent an abundant and unique resource for translational proteomic studies. In the US, melanoma is the 5th and 6th most common cancer in men and women, respectively, affecting over 230,000 people annually and metastasising in 5-15% of cases. Median survival time for distant metastatic melanoma is 6-9 months with a 5-year-survival of < 15%. In this study, 24 primary FFPE tumours which have metastasised (P-M) and 24 primary FFPE tumours which did not metastasise (P-NM) were subjected to proteomic profiling. In total, 2750 proteins were identified, of which 16 were significantly differentially expressed. Analysis of TCGA data demonstrated that expression of the genes encoding for 6 of these 16 proteins had a significant effect on survival in cutaneous melanoma. Pathway analysis of the proteomics data revealed mechanisms likely involved in the process of melanoma metastasis, including cytoskeleton rearrangement, extracellular changes and immune system alterations. A machine learning prediction model scoring an AUC of 0.922, based on these 16 differentially expressed proteins was able to accurately classify samples into P-M and P-NM. This study has identified potential biomarkers and key processes relating to melanoma metastasis using archived clinical samples, providing a basis for future studies in larger cohorts.


Assuntos
Biomarcadores Tumorais/metabolismo , Melanoma/patologia , Inclusão em Parafina/métodos , Proteoma/análise , Proteoma/metabolismo , Neoplasias Cutâneas/patologia , Fixação de Tecidos/métodos , Biomarcadores Tumorais/análise , Feminino , Humanos , Masculino , Melanoma/metabolismo , Melanoma/secundário , Proteômica , Neoplasias Cutâneas/metabolismo
20.
Toxicology ; 445: 152603, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991956

RESUMO

Haptenation of model nucleophiles, representing the key MIE in skin sensitisation, is routinely measured in chemico to provide data for skin allergy risk assessment. Better understanding of the dynamics of haptenation in human skin could provide the metrics required to improve determination of sensitiser potency for risk assessment of chemicals. We have previously demonstrated the applicability and sensitivity of the dual stable isotope labelling approach to detect low level haptenation in complex mixtures of proteins. In the present study, we investigated haptenation in a relevant living cell model over time at a subtoxic concentration. DNCB, an extremely potent sensitiser, caused minimal changes in overall protein differential expression in HaCaT cells and haptenated approximately 0.25 % of all available nucleophiles when applied at a subtoxic concentration (10µM) for 4 h. The data shows that the maximum level of haptenation occurs at 2 h and that DNCB, whilst being a promiscuous hapten, shows a preference for Cys residues, despite the considerably higher concentration of amine-based nucleophiles. Although a proportion of highly abundant proteins were haptenated, numerous haptenated sites were also detected on low abundant proteins. Certain proteins were modified at residues buried deep inside the protein structure which are less accessible to haptenation compared with surface exposed nucleophiles. The microenvironment of the buried residues may be a result of several factors influencing the reactivity of both the target nucleophile and the hapten.


Assuntos
Dinitroclorobenzeno/toxicidade , Células HaCaT/efeitos dos fármacos , Haptenos/química , Proteômica/métodos , Linhagem Celular Tumoral , Células HaCaT/metabolismo , Haptenos/metabolismo , Humanos , Irritantes/toxicidade , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA