Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36557247

RESUMO

Cytotoxicity of de novo purine synthesis (DNPS) metabolites is critical to the pathogenesis of three known and one putative autosomal recessive disorder affecting DNPS. These rare disorders are caused by biallelic mutations in the DNPS genes phosphoribosylformylglycineamidine synthase (PFAS), phosphoribosylaminoimidazolecarboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), adenylosuccinate lyase (ADSL), and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) and are clinically characterized by developmental abnormalities, psychomotor retardation, and nonspecific neurological impairment. At a biochemical level, loss of function of specific mutated enzymes results in elevated levels of DNPS ribosides in body fluids. The main pathogenic effect is attributed to the accumulation of DNPS ribosides, which are postulated to be toxic to the organism. Therefore, we decided to characterize the uptake and flux of several DNPS metabolites in HeLa cells and the impact of DNPS metabolites to viability of cancer cell lines and primary skin fibroblasts. We treated cells with DNPS metabolites and followed their flux in purine synthesis and degradation. In this study, we show for the first time the transport of formylglycinamide ribotide (FGAR), aminoimidazole ribotide (AIR), succinylaminoimidazolecarboxamide ribotide (SAICAR), and aminoimidazolecarboxamide ribotide (AICAR) into cells and their flux in DNPS and the degradation pathway. We found diminished cell viability mostly in the presence of FGAR and AIR. Our results suggest that direct cellular toxicity of DNPS metabolites may not be the primary pathogenetic mechanism in these disorders.

2.
PLoS One ; 13(12): e0208947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532129

RESUMO

Purines are essential molecules for all forms of life. In addition to constituting a backbone of DNA and RNA, purines play roles in many metabolic pathways, such as energy utilization, regulation of enzyme activity, and cell signaling. The supply of purines is provided by two pathways: the salvage pathway and de novo synthesis. Although purine de novo synthesis (PDNS) activity varies during the cell cycle, this pathway represents an important source of purines, especially for rapidly dividing cells. A method for the detailed study of PDNS is lacking for analytical reasons (sensitivity) and because of the commercial unavailability of the compounds. The aim was to fully describe the mass spectrometric fragmentation behavior of newly synthesized PDNS-related metabolites and develop an analytical method. Except for four initial ribotide PDNS intermediates that preferentially lost water or phosphate or cleaved the forming base of the purine ring, all the other metabolites studied cleaved the glycosidic bond in the first fragmentation stage. Fragmentation was possible in the third to sixth stages. A liquid chromatography-high-resolution mass spectrometric method was developed and applied in the analysis of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual enzymatic steps of PDNS and the salvage pathway. The identities of the newly synthesized intermediates of PDNS were confirmed by comparing the fragmentation patterns of the synthesized metabolites with those produced by cells (formed under pathological conditions of known and theoretically possible defects of PDNS). The use of stable isotope incorporation allowed the confirmation of fragmentation mechanisms and provided data for future fluxomic experiments. This method may find uses in the diagnosis of PDNS disorders, the investigation of purinosome formation, cancer research, enzyme inhibition studies, and other applications.


Assuntos
DNA/biossíntese , Purinas/biossíntese , RNA/biossíntese , Espectrometria de Massas em Tandem , Sistemas CRISPR-Cas , Cromatografia Líquida , DNA/química , Edição de Genes , Células HeLa , Humanos , Purinas/química , RNA/química
3.
PLoS One ; 13(7): e0201432, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30059557

RESUMO

BACKGROUND: The enzymes involved in de novo purine synthesis (DNPS), one of the basic processes in eukaryotic cells, transiently and reversibly form a dynamic multienzyme complex called the purinosome in the cytoplasm. The purinosome has been observed in a broad spectrum of cells, but some studies claim that it is an artefact of the constructs used for visualization or stress granules resulting from the exposure of cells to nutrient-reduced growth media. Both may be true depending on the method of observation. To clarify this point, we combined two previously used methods, transfection and immunofluorescence, to detect purinosomes in purinosome-free cells deficient in particular DNPS steps (CR-DNPS cells) and in cells deficient in the salvage pathway, which resulted in construction of the purinosome regardless of purine level (CR-HGPRT cells). METHODS AND FINDINGS: To restore or disrupt purinosome formation, we transiently transfected CR-DNPS and CR-HGPRT cells with vectors encoding BFP-labelled wild-type (wt) proteins and observed the normalization of purinosome formation. The cells also ceased to accumulate the substrate(s) of the defective enzyme. The CR-DNPS cell line transfected with a DNA plasmid encoding an enzyme with zero activity served as a negative control for purinosome formation. No purinosome formation was observed in these cells regardless of the purine level in the growth medium. CONCLUSION: In conclusion, both methods are useful for the detection of purinosomes in HeLa cells. Moreover, the cell-based models prepared represent a unique system for the study of purinosome assembly with deficiencies in DNPS or in the salvage pathway as well as for the study of purinosome formation under the action of DNPS inhibitors. This approach is a promising step toward the treatment of purine disorders and can also provide targets for anticancer therapy.


Assuntos
Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Purinas/biossíntese , Células HeLa , Humanos , Complexos Multienzimáticos/genética
4.
Clin Biochem ; 48(1-2): 2-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25445730

RESUMO

OBJECTIVES: Stable isotope dilution coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the sensitive method for screening for various inherited metabolic disorders using dried blood spots (DBSs). We present a method for LC-MS/MS determination of succinyladenosine (SAdo) and succinylaminoimidazole carboxamide riboside (SAICAr), biomarkers for adenylosuccinate lyase deficiency (dADSL), in DBS. DESIGN AND METHODS: SAICAr and SAdo were separated on a Symmetry-C18 column and detected using positive electrospray ionisation in selected reaction monitoring mode. The quantification was performed using the isotopically labelled internal standards SAdo-(13)C4 and SAICAr-(13)C4, which were prepared via ADSL-catalysed reactions of fumarate-(13)C4 with adenosine monophosphate and aminoimidazole carboxamide ribotide, respectively, and subsequent alkaline phosphatase-catalysed dephosphorylation of the resulting products. RESULTS: The detection of SAICAr and SAdo in DBS was linear over the range of 0-25µmol/L. The respective intra-assay and inter-assay imprecision values were less than 10.7% and 15.2% for SAICAr and 4.7% and 5.7% for SAdo. The recoveries from DBS spiked with different concentrations of SAICAr and SAdo were between 94% and 117%. The concentrations of SAICAr and SAdo were higher in the archived DBS from dADSL patients (SAICAr, 0.03-4.7µmol/L; SAdo, 1.5-21.3µmol/L; n=5) compared to those of the control subjects (SAICAr, 0-0.026µmol/L; SAdo, 0.06-0.14µmol/L; n=31), even after DBSs from dADSL patients were stored for 2-23years. CONCLUSIONS: We developed and validated a method of succinylpurine analysis in DBS that improves selective screening for dADSL in the paediatric population and may be used for retrospective diagnosis to aid the genetic counselling of affected families.


Assuntos
Adenosina/análogos & derivados , Adenilossuccinato Liase/deficiência , Aminoimidazol Carboxamida/análogos & derivados , Teste em Amostras de Sangue Seco/métodos , Erros Inatos do Metabolismo da Purina-Pirimidina/sangue , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Ribonucleosídeos/sangue , Espectrometria de Massas em Tandem/métodos , Adenosina/sangue , Adenilossuccinato Liase/sangue , Aminoimidazol Carboxamida/sangue , Transtorno Autístico , Isótopos de Carbono , Cromatografia Líquida , Humanos , Recém-Nascido , Limite de Detecção , Padrões de Referência
5.
Clin Biochem ; 46(18): 1899-901, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24183879

RESUMO

OBJECTIVES: Adenylosuccinate lyase deficiency (dADSL) is a rare inherited metabolic disorder. Biochemical diagnosis of the disease is based on the determination of enormously elevated urinary levels of succinylaminoimidazole carboxamide riboside (SAICA-riboside) and succinyladenosine (SAdo). We report a case of false negative screening for dADSL caused by deribosylation of the urinary biomarkers SAICA-riboside and SAdo. DESIGN AND METHODS: A thin-layer chromatography (TLC) method with Pauly reagent detection of SAICA-riboside was used as a screening method. High-performance liquid chromatography with diode-array detection (HPLC-DAD) and LC-MS/MS methods were used for the identification and quantitative determination of SAICA-riboside, SAdo, succinylaminoimidazole carboxamide (SAICA) and succinyladenine (SA). RESULTS: Following a negative TLC screening in a known case of dADSL, we analyzed urine using HPLC-DAD. The concentration of SAICA-riboside was 2.7mmol/mol creatinine (below the TLC detection limit), and we detected the two abnormal metabolites identified by LC-MS/MS as SAICA and SA. We showed that SAICA and SA were produced by deribosylation of SAICA-riboside and SAdo in the patient's urine. Studies performed by monitoring the production of SAICA and SA after the addition of SAICA-riboside and SAdo to the patient's urine and to urine samples from patients with urinary tract infections suggested that deribosylation is facilitated by bacterial enzymes. CONCLUSIONS: Screening methods for the diagnosis of dADSL may be falsely negative due to bacteria-mediated deribosylation of SAICA-riboside and SAdo. HPLC-DAD or LC-MS/MS analyses allowing for simultaneous detection of SAICA-riboside, SAdo and their deribosylation products SAICA and SA should be preferentially used for the diagnosis of dADSL in urine.


Assuntos
Adenilossuccinato Liase/deficiência , Aminoimidazol Carboxamida/análogos & derivados , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/urina , Ribonucleosídeos/urina , Adenosina/análogos & derivados , Adenosina/urina , Adenilossuccinato Liase/urina , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/urina , Transtorno Autístico , Proteínas de Bactérias/metabolismo , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina/métodos , Enterococcus faecalis , Enzimas/metabolismo , Reações Falso-Negativas , Humanos , Klebsiella pneumoniae , Ribonucleosídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Urina/microbiologia
6.
Mol Genet Metab ; 108(3): 178-189, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23394948

RESUMO

Purines are molecules essential for many cell processes, including RNA and DNA synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism and transfer, essential coenzyme function, and cell signaling. Purines are produced via the de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans have been associated with various types of cancer. Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical symptoms, including developmental delay, severe neurological symptoms, and autistic features. The pathogenetic mechanism is unknown for these conditions, and no effective treatments exist. The study of cells carrying mutations in the various de novo purine biosynthesis pathway genes provides one approach to analysis of purine disorders. Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method for detection of purine de novo biosynthesis intermediates based on high performance liquid chromatography with electrochemical detection. Using this technique we detected accumulation of AIR in AdeD cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential for metabolite profiling of de novo purine biosynthesis pathway mutants, identification of novel genetic defects of purine metabolism in humans, and elucidating the regulation of this critical metabolic pathway.


Assuntos
Carboxiliases/genética , Metabolômica , Mutação , Peptídeo Sintases/genética , Purinas/biossíntese , Animais , Sequência de Bases , Células CHO , Carboxiliases/metabolismo , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Técnicas Eletroquímicas , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Sintases/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Alinhamento de Sequência
7.
Hum Mol Genet ; 21(7): 1534-43, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22180458

RESUMO

The purinosome is a multienzyme complex composed by the enzymes active in de novo purine synthesis (DNPS) that cells transiently assemble in their cytosol upon depletion or increased demand of purines. The process of purinosome formation has thus far been demonstrated and studied only in human epithelial cervical cancer cells (HeLa) and human liver carcinoma cells (C3A) transiently expressing recombinant fluorescently labeled DNPS proteins. Using parallel immunolabeling of various DNPS enzymes and confocal fluorescent microscopy, we proved purinosome assembly in HeLa, human hepatocellular liver carcinoma cell line (HepG2), sarcoma osteogenic cells (Saos-2), human embryonic kidney cells (HEK293), human skin fibroblasts (SF) and primary human keratinocytes (KC) cultured in purine-depleted media. Using the identical approach, we proved in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency that various mutations of ATIC and ADSL destabilize to various degrees of purinosome assembly and found that the ability to form purinosomes correlates with clinical phenotypes of individual ADSL patients. Our results thus shown that the assembly of functional purinosomes is fully dependent on the presence of structurally unaffected ATIC and ADSL complexes and presumably also on the presence of all the other DNPS proteins. The results also corroborate the hypothesis that the phenotypic severity of ADSL deficiency is mainly determined by structural stability and residual catalytic capacity of the corresponding mutant ADSL protein complexes, as this is prerequisite for the formation and stability of the purinosome and at least partial channeling of succinylaminoimidazolecarboxamide riboside-ADSL enzyme substrates-through the DNPS pathway.


Assuntos
Adenilossuccinato Liase/genética , Hidroximetil e Formil Transferases/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/enzimologia , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Adenilossuccinato Liase/deficiência , Transtorno Autístico , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/enzimologia , Células HeLa , Humanos , Hidroximetil e Formil Transferases/análise , Queratinócitos/enzimologia , Complexos Multienzimáticos/análise , Mutação , Nucleotídeo Desaminases/análise , Purinas/metabolismo , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA