Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Kidney Int Rep ; 8(10): 2126-2135, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37850020

RESUMO

Introduction: Genetic etiologies are estimated to account for a large portion of chronic kidney diseases (CKD) in children. However, data are lacking regarding the true prevalence of monogenic etiologies stemming from an unselected population screen of children with advanced CKD. Methods: We conducted a national multicenter prospective study of all Israeli pediatric dialysis units to provide comprehensive "real-world" evidence for the genetic basis of childhood kidney failure in Israel. We performed exome sequencing and assessed the genetic diagnostic yield. Results: Between 2019 and 2022, we recruited approximately 88% (n = 79) of the children on dialysis from all 6 Israeli pediatric dialysis units. We identified genetic etiologies in 36 of 79 (45%) participants. The most common subgroup of diagnostic variants was in congenital anomalies of the kidney and urinary tract causing genes (e.g., EYA1, HNF1B, PAX2, COL4A1, and NFIA) which together explain 28% of all monogenic etiologies. This was followed by mutations in genes causing renal cystic ciliopathies (e.g., NPHP1, NPHP4, PKHD1, and BBS9), steroid-resistant nephrotic syndrome (e.g., LAGE3, NPHS1, NPHS2, LMX1B, and SMARCAL1) and tubulopathies (e.g., CTNS and AQP2). The genetic diagnostic yield was higher among Arabs compared to Jewish individuals (55% vs. 29%) and in children from consanguineous compared to nonconsanguineous families (63% vs. 29%). In 5 participants (14%) with genetic diagnoses, the molecular diagnosis did not correspond with the pre-exome diagnosis. Genetic diagnosis has a potential influence on clinical management in 27 of 36 participants (75%). Conclusion: Exome sequencing in an unbiased Israeli nationwide dialysis-treated kidney failure pediatric cohort resulted in a genetic diagnostic yield of 45% and can often affect clinical decision making.

2.
Cancers (Basel) ; 14(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35159001

RESUMO

Although the relative risk of renal cell carcinoma associated with chronic kidney injury is particularly high among sub-Saharan African ancestry populations, it is unclear yet whether the APOL1 gene risk variants (RV) for kidney disease additionally elevate this risk. APOL1 G1 and G2 RV contribute to increased risk for kidney disease in black populations, although the disease mechanism has still not been fully deciphered. While high expression levels of all three APOL1 allelic variants, G0 (the wild type allele), G1, and G2 are injurious to normal human cells, renal carcinoma cells (RCC) naturally tolerate inherent high expression levels of APOL1. We utilized CRISPR/Cas9 gene editing to generate isogenic RCC clones expressing APOL1 G1 or G2 risk variants on a similar genetic background, thus enabling a reliable comparison between the phenotypes elicited in RCC by each of the APOL1 variants. Here, we demonstrate that knocking in the G1 or G2 APOL1 alleles, or complete elimination of APOL1 expression, has major effects on proliferation capacity, mitochondrial morphology, cell metabolism, autophagy levels, and the tumorigenic potential of RCC cells. The most striking effect of the APOL1 RV effect was demonstrated in vivo by the complete abolishment of tumor growth in immunodeficient mice. Our findings suggest that, in contrast to the WT APOL1 variant, APOL1 RV are toxic for RCC cells and may act to suppress cancer cell growth. We conclude that the inherent expression of non-risk APOL1 G0 is required for RCC tumorigenicity. RCC cancer cells can hardly tolerate increased APOL1 risk variants expression levels as opposed to APOL1 G0.

3.
Pediatr Nephrol ; 36(6): 1387-1396, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32500249

RESUMO

Chronic kidney disease (CKD) is a major public health challenge, affecting as much as 8 to 18% of the world population. Identifying childhood risk factors for future CKD may help clinicians make early diagnoses and initiation of preventive interventions for CKD and its attendant comorbidities as well as monitoring for complications. The purpose of this review is to describe childhood risk factors that may predict development of overt kidney disease later in life. Currently, there are multiple childhood risk factors associated with future onset and progression of CKD. These risk factors can be grouped into five categories: genetic factors (e.g., monogenic or risk alleles), perinatal factors (e.g., low birth weight and prematurity), childhood kidney diseases (e.g., congenital anomalies, glomerular diseases, and renal cystic ciliopathies), childhood onset of chronic conditions (e.g., cancer, diabetes, hypertension, dyslipidemia, and obesity), and different lifestyle factors (e.g., physical activity, diet, and factors related to socioeconomic status). The available published information suggests that the lifelong risk for CKD can be attributed to multiple factors that appear already during childhood. However, results are conflicting on the effects of childhood physical activity, diet, and dyslipidemia on future renal function. On the other hand, there is consistent evidence to support follow-up of high-risk groups.


Assuntos
Insuficiência Renal Crônica , Adulto , Criança , Progressão da Doença , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Fatores de Risco , Classe Social
4.
J Am Soc Nephrol ; 32(2): 495-501, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184124

RESUMO

BACKGROUND: Increasing cancer incidence among children alongside improved treatments has resulted in a growing number of pediatric cancer survivors. Despite childhood cancer survivors' exposure to various factors that compromise kidney function, few studies have investigated the association between childhood cancer and future kidney disease. METHODS: To assess the risk of ESKD among childhood cancer survivors, we conducted a nationwide, population-based, retrospective cohort study that encompassed all Israeli adolescents evaluated for mandatory military service from 1967 to 1997. After obtaining detailed histories, we divided the cohort into three groups: participants without a history of tumors, those with a history of a benign tumor (nonmalignant tumor with functional impairment), and those with a history of malignancy (excluding kidney cancer). This database was linked to the Israeli ESKD registry to identify incident ESKD cases. We used Cox proportional hazards models to estimate the hazard ratio (HR) of ESKD. RESULTS: Of the 1,468,600 participants in the cohort, 1,444,345 had no history of tumors, 23,282 had a history of a benign tumor, and 973 had a history of malignancy. During a mean follow-up of 30.3 years, 2416 (0.2%) participants without a history of tumors developed ESKD. Although a history of benign tumors was not associated with an increased ESKD risk, participants with a history of malignancy exhibited a substantially elevated risk for ESKD compared with participants lacking a history of tumors, after controlling for age, sex, enrollment period, and paternal origin (adjusted HR, 3.2; 95% confidence interval, 1.3 to 7.7). CONCLUSIONS: Childhood cancer is associated with an increased risk for ESKD, suggesting the need for tighter and longer nephrological follow-up.


Assuntos
Falência Renal Crônica/epidemiologia , Neoplasias/complicações , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Humanos , Incidência , Israel , Falência Renal Crônica/diagnóstico , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Modelos de Riscos Proporcionais , Fatores de Risco , Adulto Jovem
5.
FEBS J ; 287(10): 2000-2022, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31714001

RESUMO

We evaluated alterations in the structural configurations of channels and activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome formation in apolipoprotein L1 (APOL1) risk and nonrisk milieus. APOL1G1- and APOL1G2-expressing podocytes (PD) displayed enhanced K+ efflux, induction of pyroptosis, and escalated transcription of interleukin (IL)-1ß and IL-18. APOL1G1- and APOL1G2-expressing PD promoted the transcription as well as translation of proteins involved in the formation of inflammasomes. Since glyburide (a specific inhibitor of K+ efflux channels) inhibited the transcription of NLRP3, IL-1ß, and IL-18, the role of K+ efflux in the activation of inflammasomes in APOL1 risk milieu was implicated. To evaluate the role of structural alterations in K+ channels in plasma membranes, bioinformatics studies, including molecular dynamic simulation, were carried out. Superimposition of bioinformatics reconstructions of APOL1G0, G1, and G2 showed several aligned regions. The analysis of pore-lining residues revealed that Ser342 and Tyr389 are involved in APOL1G0 pore formation and the altered conformations resulting from the Ser342Gly and Ile384Met mutation in the case of APOLG1 and deletion of the Tyr389 residue in the case of APOL1G2 are expected to alter pore characteristics, including K+ ion selectivity. Analysis of multiple membrane (lipid bilayer) models of interaction with the peripheral protein, integral membrane protein, and multimer protein revealed that for an APOL1 multimer model, APOL1G0 is not energetically favorable while the APOL1G1 and APOL1G2 moieties favor the insertion of multiple ion channels into the lipid bilayer. We conclude that altered pore configurations carry the potential to facilitate K+ ion transport in APOL1 risk milieu.


Assuntos
Apolipoproteína L1/genética , Inflamassomos/genética , Canais Iônicos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Animais , Membrana Celular/genética , Membrana Celular/ultraestrutura , Glibureto/farmacologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/ultraestrutura , Interleucina-18/genética , Interleucina-1beta/genética , Canais Iônicos/antagonistas & inibidores , Macrófagos/ultraestrutura , Proteína 3 que Contém Domínio de Pirina da Família NLR/ultraestrutura , Podócitos/efeitos dos fármacos , Podócitos/ultraestrutura , Piroptose/efeitos dos fármacos , Piroptose/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
Am J Physiol Cell Physiol ; 317(2): C209-C225, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116585

RESUMO

We hypothesized that a functional apolipoprotein LI (APOL1)-miR193a axis (inverse relationship) preserves, but disruption alters, the podocyte molecular phenotype through the modulation of autophagy flux. Podocyte-expressing APOL1G0 (G0-podocytes) showed downregulation but podocyte-expressing APOL1G1 (G1-podocytes) and APOL1G2 (G2-podocytes) displayed enhanced miR193a expression. G0-, G1-, and G2-podocytes showed enhanced expression of light chain (LC) 3-II and beclin-1, but a disparate expression of p62 (low in wild-type but high in risk alleles). G0-podocytes showed enhanced, whereas G1- and G2-podocytes displayed decreased, phosphorylation of Unc-51-like autophagy-activating kinase (ULK)1 and class III phosphatidylinositol 3-kinase (PI3KC3). Podocytes overexpressing miR193a (miR193a-podocytes), G1, and G2 showed decreased transcription of PIK3R3 (PI3KC3's regulatory unit). Since 3-methyladenine (3-MA) enhanced miR193a expression but inhibited PIK3R3 transcription, it appears that 3-MA inhibits autophagy and induces podocyte dedifferentiation via miR193a generation. miR193a-, G1-, and G2-podocytes also showed decreased phosphorylation of mammalian target of rapamycin (mTOR) that could repress lysosome reformation. G1- and G2-podocytes showed enhanced expression of run domain beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon); however, its silencing prevented their dedifferentiation. Docking, protein-protein interaction, and immunoprecipitation studies with antiautophagy-related gene (ATG)14L, anti-UV radiation resistance-associated gene (UVRAG), or Rubicon antibodies suggested the formation of ATG14L complex I and UVRAG complex II in G0-podocytes and the formation of Rubicon complex III in G1- and G2-podocytes. These findings suggest that the APOL1 risk alleles favor podocyte dedifferentiation through blockade of multiple autophagy pathways.


Assuntos
Apolipoproteína L1/metabolismo , Autofagia , Desdiferenciação Celular , MicroRNAs/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteína L1/genética , Autofagossomos/metabolismo , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular Transformada , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Simulação de Dinâmica Molecular , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/patologia , Mapas de Interação de Proteínas , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
7.
J Clin Endocrinol Metab ; 104(6): 2286-2294, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715336

RESUMO

PURPOSE: African Americans who shed JC polyomavirus (JCV) in their urine have reduced rates of nondiabetic chronic kidney disease (CKD). We assessed the associations between urinary JCV and urine BK polyomavirus (BKV) with CKD in African Americans with diabetes mellitus. METHODS: African Americans with diabetic kidney disease (DKD) and controls lacking nephropathy from the Family Investigation of Nephropathy and Diabetes Consortium (FIND) and African American-Diabetes Heart Study (AA-DHS) had urine tested for JCV and BKV using quantitative PCR. Of the 335 individuals tested, 148 had DKD and 187 were controls. RESULTS: JCV viruria was detected more often in the controls than in the patients with DKD (FIND: 46.6% vs 32.2%; OR, 0.52; 95% CI, 0.29 to 0.93; P = 0.03; AA-DHS: 30.4% vs 26.2%; OR, 0.63; 95% CI, 0.27 to 1.48; P = 0.29). A joint analysis adjusted for age, sex, and study revealed that JC viruria was inversely associated with DKD (OR, 0.56; 95% CI, 0.35 to 0.91; P = 0.02). Statistically significant relationships between BKV and DKD were not observed. MAIN CONCLUSIONS: The results from the present study extend the inverse association between urine JCV and nondiabetic nephropathy in African Americans to DKD. These results imply that common pathways likely involving the innate immune system mediate coincident chronic kidney injury and restriction of JCV replication. Future studies are needed to explore causative pathways and characterize whether the absence of JC viruria can serve as a biomarker for DKD in the African American population.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/virologia , Vírus JC/isolamento & purificação , Negro ou Afro-Americano , Idoso , Vírus BK/isolamento & purificação , Coinfecção/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções Urinárias/virologia , Urina/virologia
8.
Stem Cells ; 37(2): 176-189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30379370

RESUMO

The interactions of cancer stem cells (CSCs) within the tumor microenvironment (TME), contribute to the overall phenomenon of intratumoral heterogeneity, which also involve CSC interactions with noncancer stromal cells. Comprehensive understanding of the tumorigenesis process requires elucidating the coordinated gene expression between cancer and tumor stromal cells for each tumor. We show that human gastric cancer cells (GSC1) subvert gene expression and cytokine production by mesenchymal stem cells (GSC-MSC), thus promoting tumor progression. Using mixed composition of human tumor xenografts, organotypic culture, and in vitro assays, we demonstrate GSC1-mediated specific reprogramming of "naïve" MSC into specialized tumor associated MSC equipped with a tumor-promoting phenotype. Although paracrine effect of GSC-MSC or primed-MSC is sufficient to enable 2D growth of GSC1, cell-cell interaction with GSC-MSC is necessary for 3D growth and in vivo tumor formation. At both the transcriptional and at the protein level, RNA-Seq and proteome analyses, respectively, revealed increased R-spondin expression in primed-MSC, and paracrine and juxtacrine mediated elevation of Lgr5 expression in GSC1, suggesting GSC-MSC-mediated support of cancer stemness in GSC1. CSC properties are sustained in vivo through the interplay between GSC1 and GSC-MSC, activating the R-spondin/Lgr5 axis and WNT/ß-catenin signaling pathway. ß-Catenin+ cell clusters show ß-catenin nuclear localization, indicating the activation of the WNT/ß-catenin signaling pathway in these cells. The ß-catenin+ cluster of cells overlap the Lgr5+ cells, however, not all Lgr5+ cells express ß-catenin. A predominant means to sustain the CSC contribution to tumor progression appears to be subversion of MSC in the TME by cancer cells. Stem Cells 2018 Stem Cells 2019;37:176-189.


Assuntos
Reprogramação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Neoplasias Gástricas/genética , Humanos , Neoplasias Gástricas/metabolismo , Microambiente Tumoral
9.
Am J Pathol ; 188(11): 2508-2528, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201495

RESUMO

Human parietal epithelial cells (PECs) are progenitor cells that sustain podocyte homeostasis. We hypothesized that the lack of apolipoprotein (APO) L1 ensures the PEC phenotype, but its induction initiates PEC transition (expression of podocyte markers). APOL1 expression and down-regulation of miR193a coincided with the expression of podocyte markers during the transition. The induction of APOL1 also stimulated transition markers in human embryonic kidney cells (cells with undetectable APOL1 protein expression). APOL1 silencing in PECs up-regulated miR193a expression, suggesting the possibility of a reciprocal feedback relationship between APOL1 and miR193a. HIV, interferon-γ, and vitamin D receptor agonist down-regulated miR193a expression and induced APOL1 expression along with transition markers in PECs. Luciferase assay suggested a putative interaction between miR193a and APOL1. Since silencing of APOL1 attenuated HIV-, vitamin D receptor agonist-, miR193a inhibitor-, and interferon-γ-induced expression of transition markers, APOL1 appears to be a critical functional constituent of the miR193a- APOL1 axis in PECs. This notion was confirmed by further enhanced expression of PEC markers in APOL1 mRNA-silenced PECs. In vivo studies, glomeruli in patients with HIV, and HIV/APOL1 transgenic mice had foci of PECs expressing synaptopodin, a transition marker. APOL1 likely regulates PEC molecular phenotype through modulation of miR193a expression, and APOL1 and miR193a share a reciprocal feedback relationship.


Assuntos
Nefropatia Associada a AIDS/patologia , Apolipoproteína L1/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Glomérulos Renais/patologia , MicroRNAs/genética , Nefropatia Associada a AIDS/metabolismo , Nefropatia Associada a AIDS/virologia , Animais , Apolipoproteína L1/genética , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Glomérulos Renais/metabolismo , Camundongos , Camundongos Transgênicos
10.
Nephrol Dial Transplant ; 33(11): 1960-1967, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420808

RESUMO

Background: Viral infections can trigger chronic kidney disease (CKD) and the urine virome may inform risk. The Natural History of APOL1-Associated Nephropathy Study (NHAANS) reported that urine JC polyomavirus (JCPyV) associated with a lower risk of APOL1-associated nephropathy in African Americans. Herein, association was assessed between urine JCPyV with CKD in African Americans independent from the APOL1 genotype. Methods: Quantitative polymerase chain reaction was performed for urinary detection of JCPyV and BK polyoma virus (BKPyV) in 200 newly recruited nondiabetic African Americans. A combined analysis was performed in these individuals plus 300 NHAANS participants. Results: In the 200 new participants, urine JCPyV was present in 8.8% of CKD cases and 45.8% of nonnephropathy controls (P = 3.0 × 10-8). In those with APOL1 renal-risk genotypes, JCPyV was detected in 5.1% of cases and 40.0% of controls (P = 0.0002). In those lacking APOL1 renal-risk genotypes, JCPyV was detected in 12.2% of cases and 48.8% of controls (P = 8.5 × 10-5). BKPyV was detected in 1.3% of cases and 0.8% of controls (P = 0.77). In a combined analysis with 300 NHAANS participants (n = 500), individuals with urine JCPyV had a 63% lower risk of CKD compared with those without urine JCPyV (odds ratio 0.37; P = 4.6 × 10-6). RNA fluorescence in situ hybridization confirmed the presence of JCPyV genomic DNA and JCPyV messenger RNA (mRNA) in nondiseased kidney. Conclusions: Inverse relationships exist between JCPyV viruria and non-diabetic CKD. Future studies should determine whether renal inflammation associated with CKD is less permissive for JCPyV reactivation/replication or whether JCPyV is a marker of reduced host immune responsiveness that diminishes immune pathologic contributions to CKD.


Assuntos
Apolipoproteína L1/genética , Negro ou Afro-Americano/genética , Infecções por Polyomavirus/virologia , Insuficiência Renal Crônica/prevenção & controle , Infecções Tumorais por Vírus/virologia , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Vírus JC/genética , Vírus JC/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Infecções por Polyomavirus/etnologia , Infecções por Polyomavirus/urina , Insuficiência Renal Crônica/etnologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/virologia , Infecções Tumorais por Vírus/etnologia
11.
Am J Physiol Renal Physiol ; 314(5): F832-F843, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357419

RESUMO

The loss of podocyte (PD) molecular phenotype is an important feature of diabetic podocytopathy. We hypothesized that high glucose (HG) induces dedifferentiation in differentiated podocytes (DPDs) through alterations in the apolipoprotein (APO) L1-microRNA (miR) 193a axis. HG-induced DPD dedifferentiation manifested in the form of downregulation of Wilms' tumor 1 (WT1) and upregulation of paired box 2 (PAX2) expression. WT1-silenced DPDs displayed enhanced expression of PAX2. Immunoprecipitation of DPD cellular lysates with anti-WT1 antibody revealed formation of WT1 repressor complexes containing Polycomb group proteins, enhancer of zeste homolog 2, menin, and DNA methyltransferase (DNMT1), whereas silencing of either WT1 or DNMT1 disrupted this complex with enhanced expression of PAX2. HG-induced DPD dedifferentiation was associated with a higher expression of miR193a, whereas inhibition of miR193a prevented DPD dedifferentiation in HG milieu. HG downregulated DPD expression of APOL1. miR193a-overexpressing DPDs displayed downregulation of APOL1 and enhanced expression of dedifferentiating markers; conversely, silencing of miR193a enhanced the expression of APOL1 and preserved DPD phenotype. Moreover, stably APOL1G0-overexpressing DPDs displayed the enhanced expression of WT1 but attenuated expression of miR193a; nonetheless, silencing of APOL1 reversed these effects. Since silencing of APOL1 enhanced miR193a expression as well as dedifferentiation in DPDs, it appears that downregulation of APOL1 contributed to dedifferentiation of DPDs through enhanced miR193a expression in HG milieu. Vitamin D receptor agonist downregulated miR193a, upregulated APOL1 expression, and prevented dedifferentiation of DPDs in HG milieu. These findings suggest that modulation of the APOL1-miR193a axis carries a potential to preserve DPD molecular phenotype in HG milieu.


Assuntos
Apolipoproteína L1/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Glucose/toxicidade , MicroRNAs/metabolismo , Podócitos/efeitos dos fármacos , Apolipoproteína L1/genética , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Linhagem Celular Transformada , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Fenótipo , Podócitos/metabolismo , Podócitos/patologia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas WT1/genética , Proteínas WT1/metabolismo
12.
Lancet ; 389(10088): 2551-2562, 2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28495106

RESUMO

The principle that global human identity and dignity supersede other values is a broadly accepted conviction that guides practice and policies in the realm of human health in most of the world. An assessment of the level of success that Israel has achieved in health, in the face of formidable challenges, including rapid population growth, diverse and often divided ethnic affiliations, and existential security threats, leads us to propose that extension of this principle of global human identity and dignity, together with the objective of a decent society, as overriding values beyond health to other domains of human endeavour within Israel and in its relations with neighbouring peoples, represents an entirely achievable imperative. The result will be to further advance Israel's aspiration to serve as a model for societal decency with wide international acceptance and engagement. We have identified several determinants of Israel's advancement in health, including: articulation of a clear vision, national purpose, and long-term commitment that seeks to take the health of its citizens seriously; a multi-ethnic population that brings diversity and energy to national progress; a political democracy, which is characterised by robust debate and discussion about the nation's future; national legislation governing cardinal health-care processes; cultural and religious histories that respect and revere scholarship, learning, research, and charitable donation; an expanding economy, with recent but increasing appreciation of the economic, social, and political underpinnings of health and health inequalities; a strong base of international support from the Diaspora Jewish community; and a strong desire for acceptance by the international community in key arenas, especially science and health. As a result, despite the fewer than seven decades since its establishment, Israel has achieved important milestones in health. Nevertheless, this trajectory of achievement is threatened by several serious challenges, including the capacity to sustain high-quality universal health coverage, especially for an ageing population living with multiple comorbidities in the face of a stagnant level of the percentage of treasury funding to health care at a level that is well below the average of the Organisation for Economic Co-operation and Development; ever-increasing transfer of services and care covered by the mandatory public health services basket to private programmes; insufficient progress in resolving health disparities among and between communities, populations, and regions of the country congruent with disparities in income and employment; gender inequities; a looming increase in the already alarming shortfall in health-care professionals; and failure to match inpatient and acute care facilities to manage growing needs. These challenges within Israel are magnified in the context of health disparities with the neighbouring Palestinian population, a situation in which ongoing-but fragile and limited-health cooperation and training arrangements cannot stand in for a solution that will address Palestinian national aspirations. We come away from this Series with a great sense of optimism, but with specific recommendations that are based on the foregoing challenges. We believe that by increasing the investment in the health sector, which includes investing in the societal, political, educational, and environmental underpinnings of health, far more can be achieved to move Israel to a model international leadership position in health care, education, and research, and turn health into an engine for economic wellbeing and development. Religious leadership in Israel, with its formidable political influence, can be harnessed to promote health initiatives in areas ranging from smoking cessation and healthy diet to organ transplantation, and most of all condemnation of hostility and its replacement by peaceful resolution of even the deepest conflicts. Most of all, this Series showed that there is an enormous opportunity, which Israel can lead, to leverage the universally accepted principles of health as a sanctuary against conflict and inequity, to achieve a brighter future for a deeply troubled region of the world.


Assuntos
Atenção à Saúde/tendências , Conservação dos Recursos Naturais/tendências , Política de Saúde/tendências , Nível de Saúde , Humanos , Cooperação Internacional , Israel , Crescimento Demográfico
13.
Clin J Am Soc Nephrol ; 11(2): 262-70, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26668025

RESUMO

BACKGROUND AND OBJECTIVES: Prior studies have shown that the APOL1 risk alleles are associated with a greater risk of HIV-associated nephropathy and FSGS among blacks who are HIV positive. We sought to determine whether the APOL1 high-risk genotype incrementally improved the prediction of these underlying lesions beyond conventional clinical factors. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: In a cross-sectional study, we analyzed data from 203 blacks who are HIV positive, underwent kidney biopsies between 1996 and 2011, and were genotyped for the APOL1 G1 and G2 alleles. Predictive logistic regression models with conventional clinical factors were compared with those that also included APOL1 genotype using receiver-operating curves and bootstrapping analyses with crossvalidation. RESULTS: The addition of APOL1 genotype to HIV-related risk factors for kidney disease in a predictive model improved the prediction of non-HIV-associated nephropathy FSGS, specifically, increasing the c statistic from 0.65 to 0.74 (P=0.04). Although two risk alleles were significantly associated with higher odds of HIV-associated nephropathy, APOL1 genotype did not add incrementally to the prediction of this specific histopathology. CONCLUSIONS: APOL1 genotype may provide additional diagnostic information to traditional clinical variables in predicting underlying FSGS spectrum lesions in blacks who are HIV positive. In contrast, although APOL1 risk genotype predicts HIV-associated nephropathy, it lacked a high c statistic sufficient for discrimination to eliminate the role of kidney biopsy in the clinical care of blacks who are HIV positive with nephrotic proteinuria or unexplained kidney disease.


Assuntos
Nefropatia Associada a AIDS/genética , Apolipoproteínas/genética , Negro ou Afro-Americano/genética , Glomerulosclerose Segmentar e Focal/genética , Infecções por HIV/genética , Rim/patologia , Lipoproteínas HDL/genética , Nefropatia Associada a AIDS/diagnóstico , Nefropatia Associada a AIDS/etnologia , Adulto , Apolipoproteína L1 , Biópsia , Distribuição de Qui-Quadrado , Estudos Transversais , Feminino , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/etnologia , Infecções por HIV/diagnóstico , Infecções por HIV/etnologia , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Fenótipo , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
14.
Stem Cells ; 34(4): 1011-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26676563

RESUMO

Non-neoplastic stromal cells harvested from patient tumors were identified as tumor-derived mesenchymal stem cells (MSCs) by their multipotential capacity to differentiate into adipocytes, osteoblasts, and chondrocytes and by the expression of MSC specific cell surface markers. These procedures yielded also epithelial cancer cells and their counterpart MSC from gastric carcinoma (GSC1) and lung carcinoma (LC2). While the LC2 cancer cell growth is independent of their LC-MSC, the GSC1 cancer cell growth is critically dependent on the presence of their counterpart GSC-MSC or their conditioned medium (CM). The fact that none of the various other tumor-derived MSCs was able to restore the specific effect of GSC-MSC on GSC1 cancer cell growth suggests specificity of tumor-derived MSC, which are specifically recruited and "educated"/reprogrammed by the cancer cells to support tumor growth. Using cytokine array analysis, we were able to demonstrate that GSC1 cell growth is mediated through hepatocyte growth factor (HGF)/c-MET signaling pathway which is activated exclusively by HGF secreted from GSC-MSC. An innovative approach demonstrates GSC1-mediated specific tropism of "naïve" MSC from the adjacent tissue in a tumor specific manner to support tumor progression. The results suggest that specific tumor tropic "naïve" MSC are reprogrammed in a tumor-specific manner to support gastric tumor progression. Understanding the mechanisms involved in the interactions of the tumor cancer cells and tumor-derived MSC will constitute the basis for developing multimodal anticancer therapeutic strategies that will also take into account the specific tumor tropism properties of MSC and their reprogramming.


Assuntos
Carcinoma/patologia , Fator de Crescimento de Hepatócito/biossíntese , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/patologia , Proteínas Proto-Oncogênicas c-met/biossíntese , Neoplasias Gástricas/patologia , Adipócitos/metabolismo , Carcinogênese/genética , Carcinoma/genética , Carcinoma/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Condrócitos/metabolismo , Meios de Cultivo Condicionados/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
15.
Blood Cells Mol Dis ; 55(4): 320-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26460255

RESUMO

Chronic granulomatous disease (CGD) is a rare congenital immune deficiency caused by mutations in any of the five genes encoding NADPH oxidase subunits. One of these genes is NCF1, encoding the p47(phox) protein. A group of 39 patients, 14 of whom are of Kavkazi Jewish descent, was investigated for a founder effect for the mutation c.579G>A (p.Trp193Ter) in NCF1. We analyzed various genetic markers in the NCF1 region, including two single nucleotide polymorphisms (SNPs) in NCF1 and two short tandem repeats (STRs) located near NCF1. Most patients were homozygous for the c.579G>A mutation, but three patients were hemizygotes, with a deletion of NCF1 on the other allele, and three patients were compound heterozygotes with another mutation in NCF1. All Kavkazi Jewish patients had a c.295G_c.345T SNP combination in NCF1 and shared a common number of repeats in STR3. In addition, 90% of the Kavkazi Jewish patients shared a common number of repeats in STR1. This uniformity indicates that the c.579G>A mutation in NCF1 was introduced some 1200-2300 years ago in the Kavkazi Jewish population. Variation amongst the other investigated populations from the Middle East indicates that this mutation exists in these non-Kavkazi populations already for more than 5000 years.


Assuntos
Efeito Fundador , Doença Granulomatosa Crônica/genética , Judeus/genética , Mutação , NADPH Oxidases/genética , Alelos , Análise Mutacional de DNA , Feminino , Frequência do Gene , Ordem dos Genes , Loci Gênicos , Genótipo , Haplótipos , Humanos , Masculino , Repetições de Microssatélites , Linhagem
16.
Rambam Maimonides Med J ; 6(3)2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26241225

RESUMO

During the past 50 years, a dramatic reduction in the mortality rate associated with cardiovascular disease has occurred in the US and other countries. Statistical modeling has revealed that approximately half of this reduction is the result of risk factor mitigation. The successful identification of such risk factors was pioneered and has continued with the Framingham Heart Study, which began in 1949 as a project of the US National Heart Institute (now part of the National Heart, Lung, and Blood Institute). Decreases in total cholesterol, blood pressure, smoking, and physical inactivity account for 24%, 20%, 12%, and 5% reductions in the mortality rate, respectively. Nephrology was designated as a recognized medical professional specialty a few years later. Hemodialysis was first performed in 1943. The US Medicare End-Stage Renal Disease (ESRD) Program was established in 1972. The number of patients in the program increased from 5,000 in the first year to more than 500,000 in recent years. Only recently have efforts for risk factor identification, early diagnosis, and prevention of chronic kidney disease (CKD) been undertaken. By applying the approach of the Framingham Heart Study to address CKD risk factors, we hope to mirror the success of cardiology; we aim to prevent progression to ESRD and to avoid the cardiovascular complications associated with CKD. In this paper, we present conceptual examples of risk factor modification for CKD, in the setting of this historical framework.

17.
Exp Mol Pathol ; 98(3): 491-501, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25796344

RESUMO

Clinical reports have demonstrated that higher rates of non-diabetic glomerulosclerosis in African Americans can be attributed to two coding sequence variants (G1 and G2) in the APOL1 gene; however, the underlying mechanism is still unknown. Kidney biopsy data suggest enhanced expression of APOL1/APOL1 variants (Vs) in smooth muscle cells (SMCs) of renal vasculature. Since APOL1 is a secretory protein of relatively low molecular weight (41kDa), SMCs may be a contributory endocrine/paracrine source of APOL1 wild type (WT)/APOL1Vs in the glomerular capillary perfusate percolating podocytes. In the present study, we tested the hypothesis that an HIV milieu stimulated secretion of APOL1 and its risk variants by arterial SMCs contributes to podocyte injury. Human umbilical artery smooth muscle cells (HSMCs)-treated with conditioned media (CM) of HIV-infected peripheral mononuclear cells (PBMC/HIV-CM), CM of HIV-infected U939 cells, or recombinant IFN-γ displayed enhanced expression of APOL1. Podocytes co-cultured in trans-wells with HSMCs-over expressing APOL1WT showed induction of injury; however, podocytes co-cultured with HSMC-over expressing either APOL1G1 or APOL1G2 showed several folds greater injury when compared to HSMC-over expressing APOL1WT. Conditioned media collected from HSMC-over-expressing APOL1G1/APOL1G2 (HSMC/APOL1G1-CM or HSMC/APOL1G2-CM) also displayed higher percentages of injured podocytes in the form of swollen cells, leaky lysosomes, loss of viability, and enhanced sensitivity to adverse host factors when compared to HSMC/APOL1WT-CM. Notably, HSMC/APOL1WT-CM promoted podocyte injury only at a significantly higher concentrations compared to HSMC/APOL1G1/G2-CM. We conclude that HSMCs could serve as an endocrine/paracrine source of APOL1Vs, which mediate accelerated podocyte injury in HIV milieu.


Assuntos
Apolipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Músculo Liso Vascular/metabolismo , Podócitos/metabolismo , Apolipoproteína L1 , Apolipoproteínas/genética , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , HIV/patogenicidade , Humanos , Lipoproteínas HDL/genética , Monócitos/metabolismo , Monócitos/virologia , Músculo Liso Vascular/efeitos dos fármacos , Podócitos/efeitos dos fármacos
18.
PLoS One ; 8(12): e83651, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358304

RESUMO

Intratumoral heterogeneity challenges existing paradigms for anti-cancer therapy. We have previously demonstrated that the human embryonic stem cells (hESC)-derived cellular microenvironment in immunocompromised mice, enables functional distinction of heterogeneous tumor cells, including cells which do not grow into a tumor in a conventional direct tumor xenograft platform. We have identified and characterized six cancer cell subpopulations each clonally expanded from a single cell, derived from human ovarian clear cell carcinoma of a single tumor, to demonstrate striking intratumoral phenotypic heterogeneity that is dynamically dependent on the tumor growth microenvironment. These cancer cell subpopulations, characterized as cancer stem cell subpopulations, faithfully recapitulate the full spectrum of histological phenotypic heterogeneity known for human ovarian clear cell carcinoma. Each of the six subpopulations displays a different level of morphologic and tumorigenic differentiation wherein growth in the hESC-derived microenvironment favors growth of CD44+/aldehyde dehydrogenase positive pockets of self-renewing cells that sustain tumor growth through a process of tumorigenic differentiation into CD44-/aldehyde dehydrogenase negative derivatives. Strikingly, these derivative cells display microenvironment-dependent plasticity with the capacity to restore self-renewal markers and CD44 expression. In the current study, we delineate the distinct gene expression and epigenetic profiles of two such subpopulations, representing extremes of phenotypic heterogeneity in terms of niche-dependent self-renewal and tumorigenic differentiation. By combining Gene Set Enrichment, Gene Ontology and Pathway-focused array analyses with methylation status, we propose a suite of robust differences in tumor self-renewal and differentiation pathways that underlie the striking intratumoral phenotypic heterogeneity which characterize this and other solid tumor malignancies.


Assuntos
Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Nicho de Células-Tronco/genética , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos SCID , Análise em Microsséries , Pessoa de Meia-Idade , Transcriptoma
19.
Cancer Res ; 73(12): 3555-65, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23576551

RESUMO

Human tumor vessels express tumor vascular markers (TVM), proteins that are not expressed in normal blood vessels. Antibodies targeting TVMs could act as potent therapeutics. Unfortunately, preclinical in vivo studies testing anti-human TVM therapies have been difficult to do due to a lack of in vivo models with confirmed expression of human TVMs. We therefore evaluated TVM expression in a human embryonic stem cell-derived teratoma (hESCT) tumor model previously shown to have human vessels. We now report that in the presence of tumor cells, hESCT tumor vessels express human TVMs. The addition of mouse embryonic fibroblasts and human tumor endothelial cells significantly increases the number of human tumor vessels. TVM induction is mostly tumor-type-specific with ovarian cancer cells inducing primarily ovarian TVMs, whereas breast cancer cells induce breast cancer specific TVMs. We show the use of this model to test an anti-human specific TVM immunotherapeutics; anti-human Thy1 TVM immunotherapy results in central tumor necrosis and a three-fold reduction in human tumor vascular density. Finally, we tested the ability of the hESCT model, with human tumor vascular niche, to enhance the engraftment rate of primary human ovarian cancer stem-like cells (CSC). ALDH(+) CSC from patients (n = 6) engrafted in hESCT within 4 to 12 weeks whereas none engrafted in the flank. ALDH(-) ovarian cancer cells showed no engraftment in the hESCT or flank (n = 3). Thus, this model represents a useful tool to test anti-human TVM therapy and evaluate in vivo human CSC tumor biology.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/metabolismo , Teratoma/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Imunotoxinas/administração & dosagem , Imunotoxinas/imunologia , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teratoma/tratamento farmacológico , Teratoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Blood ; 120(3): 603-12, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22645183

RESUMO

Human cancers display substantial intratumoral genetic heterogeneity, which facilitates tumor survival under changing microenvironmental conditions. Tumor substructure and its effect on disease progression and relapse are incompletely understood. In the present study, a high-throughput method that uses neutral somatic mutations accumulated in individual cells to reconstruct cell lineage trees was applied to hundreds of cells of human acute leukemia harvested from multiple patients at diagnosis and at relapse. The reconstructed cell lineage trees of patients with acute myeloid leukemia showed that leukemia cells at relapse were shallow (divide rarely) compared with cells at diagnosis and were closely related to their stem cell subpopulation, implying that in these instances relapse might have originated from rarely dividing stem cells. In contrast, among patients with acute lymphoid leukemia, no differences in cell depth were observed between diagnosis and relapse. In one case of chronic myeloid leukemia, at blast crisis, most of the cells at relapse were mismatch-repair deficient. In almost all leukemia cases, > 1 lineage was observed at relapse, indicating that diverse mechanisms can promote relapse in the same patient. In conclusion, diverse relapse mechanisms can be observed by systematic reconstruction of cell lineage trees of patients with leukemia.


Assuntos
Heterogeneidade Genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Instabilidade de Microssatélites , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Antineoplásicos/uso terapêutico , Biópsia , Crise Blástica/tratamento farmacológico , Crise Blástica/genética , Crise Blástica/patologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem da Célula/genética , Resistencia a Medicamentos Antineoplásicos/genética , Citometria de Fluxo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Recidiva , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA