Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 106(2): 246-255, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004447

RESUMO

Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms . Dysplasia of corpus callosum with focal thinning of the posterior part and characteristic facial features appeared to be unifying findings. RalGAPA1 was absent in the fibroblasts derived from two affected individuals suggesting a loss-of-function effect of the RALGAPA1 variants. Consequently, RalA activity was increased in these cell lines, which is in keeping with the idea that RalGAPA1 deficiency causes a constitutive activation of RalA. Additionally, levels of RalGAPB, a scaffolding subunit of the RalGAP complex, were dramatically reduced, indicating a dysfunctional RalGAP complex. Moreover, RalGAPA1 deficiency clearly increased cell-surface levels of lipid raft components in detached fibroblasts, which might indicate that anchorage-dependence of cell growth signaling is disturbed. Our findings indicate that the dysregulation of the RalA pathway has an important impact on neuronal function and brain development. In light of the partially overlapping phenotype between RALA- and RALGAPA1-associated diseases, it appears likely that dysregulation of the RalA signaling pathway leads to a distinct group of genetic syndromes that we suggest could be named RALopathies.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos/etiologia , Proteínas Ativadoras de GTPase/genética , Hipotonia Muscular/etiologia , Mutação , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/etiologia , Espasmos Infantis/etiologia , Alelos , Movimento Celular , Proliferação de Células , Pré-Escolar , Família , Transtornos da Alimentação e da Ingestão de Alimentos/patologia , Feminino , Humanos , Lactente , Masculino , Hipotonia Muscular/patologia , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Espasmos Infantis/patologia
2.
Mol Cancer Ther ; 8(8): 2172-82, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19671739

RESUMO

Despite initial efficacy of imatinib mesylate in most gastrointestinal stromal tumor (GIST) patients, many experience primary/secondary drug resistance. Therefore, clinical management of GIST may benefit from further molecular characterization of tumors before and after imatinib mesylate treatment. As part of a recent phase II trial of neoadjuvant/adjuvant imatinib mesylate treatment for advanced primary and recurrent operable GISTs (Radiation Therapy Oncology Group S0132), gene expression profiling using oligonucleotide microarrays was done on tumor samples obtained before and after imatinib mesylate therapy. Patients were classified according to changes in tumor size after treatment based on computed tomography scan measurements. Gene profiling data were evaluated with Statistical Analysis of Microarrays to identify differentially expressed genes (in pretreatment GIST samples). Based on Statistical Analysis of Microarrays [False Discovery Rate (FDR), 10%], 38 genes were expressed at significantly lower levels in the pretreatment biopsy samples from tumors that significantly responded to 8 to 12 weeks of imatinib mesylate, that is, >25% tumor reduction. Eighteen of these genes encoded Krüppel-associated box (KRAB) domain containing zinc finger (ZNF) transcriptional repressors. Importantly, 10 KRAB-ZNF genes mapped to a single locus on chromosome 19p, and a subset predicted likely response to imatinib mesylate-based therapy in a naïve panel of GIST. Furthermore, we found that modifying expression of genes within this predictive signature can enhance the sensitivity of GIST cells to imatinib mesylate. Using clinical pretreatment biopsy samples from a prospective neoadjuvant phase II trial, we have identified a gene signature that includes KRAB-ZNF 91 subfamily members that may be both predictive of and functionally associated with likely response to short-term imatinib mesylate treatment.


Assuntos
Antineoplásicos/uso terapêutico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Perfilação da Expressão Gênica , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzamidas , Feminino , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mesilato de Imatinib , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Dedos de Zinco/genética
3.
Genes Chromosomes Cancer ; 48(10): 886-96, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19585585

RESUMO

Gastrointestinal stromal tumors (GISTs) generally harbor activating mutations in KIT or platelet-derived growth facter receptor (PDGFRA). Mutations in these receptor tyrosine kinases lead to dysregulation of downstream signaling pathways that contribute to GIST pathogenesis. GISTs with KIT or PDGFRA mutations also undergo secondary cytogenetic alterations that may indicate the involvement of additional genes important in tumor progression. Approximately 10-15% of adult and 85% of pediatric GISTs do not have mutations in KIT or in PDGFRA. Most mutant adult GISTs display large-scale genomic alterations, but little is known about the mutation-negative tumors. Using genome-wide DNA arrays, we investigated genomic imbalances in a set of 31 GISTs, including 10 KIT/PDGFRA mutation-negative tumors from nine adults and one pediatric case and 21 mutant tumors. Although all 21 mutant GISTs exhibited multiple copy number aberrations, notably losses, eight of the 10 KIT/PDGFRA mutation-negative GISTs exhibited few or no genomic alterations. One KIT/PDGFRA mutation-negative tumor exhibiting numerous genomic changes was found to harbor an alternate activating mutation, in the serine-threonine kinase BRAF. The only other mutation-negative GIST with significant chromosomal imbalances was a recurrent metastatic tumor found to harbor a homozygous deletion in chromosome arm 9p. Similar findings in several KIT-mutant GISTs identified a minimal overlapping region of deletion of approximately 0.28 Mbp in 9p21.3 that includes only the CDKN2A/2B genes, which encode inhibitors of cell-cycle kinases. These results suggest that GISTs without activating kinase mutations, whether pediatric or adult, generally exhibit a much lower level of cytogenetic progression than that observed in mutant GISTs.


Assuntos
Tumores do Estroma Gastrointestinal/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Tumores do Estroma Gastrointestinal/enzimologia , Dosagem de Genes , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética
4.
Cancer Res ; 66(10): 5477-86, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16707477

RESUMO

Most gastrointestinal stromal tumors (GISTs) possess a gain-of-function mutation in c-KIT. Imatinib mesylate, a small-molecule inhibitor against several receptor tyrosine kinases, including KIT, platelet-derived growth factor receptor-alpha, and BCR-ABL, has therapeutic benefit for GISTs both via KIT and via unknown mechanisms. Clinical evidence suggests that a potential therapeutic benefit of imatinib might result from decreased glucose uptake as measured by positron emission tomography using 18-fluoro-2-deoxy-d-glucose. We sought to determine the mechanism of and correlation to altered metabolism and cell survival in response to imatinib. Glucose uptake, cell viability, and apoptosis in GIST cells were measured following imatinib treatment. Lentivirus constructs were used to stably express constitutively active AKT1 or AKT2 in GIST cells to study the role of AKT signaling in metabolism and cell survival. Immunoblots and immunofluorescent staining were used to determine the levels of plasma membrane-bound glucose transporter Glut4. We show that oncogenic activation of KIT maximizes glucose uptake in an AKT-dependent manner. Imatinib treatment markedly reduces glucose uptake via decreased levels of plasma membrane-bound Glut4 and induces apoptosis or growth arrest by inhibiting KIT activity. Importantly, expression of constitutively active AKT1 or AKT2 does not rescue cells from the imatinib-mediated apoptosis although glucose uptake was not blocked, suggesting that the potential therapeutic effect of imatinib is independent of AKT activity and glucose deprivation. Overall, these findings contribute to a clearer understanding of the molecular mechanisms involved in the therapeutic benefit of imatinib in GIST and suggest that a drug-mediated decrease in tumor metabolism observed clinically may not entirely reflect therapeutic efficacy of treatment.


Assuntos
Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas , Cromonas/farmacologia , Tumores do Estroma Gastrointestinal/enzimologia , Tumores do Estroma Gastrointestinal/patologia , Glucose/farmacocinética , Transportador de Glucose Tipo 4/biossíntese , Transportador de Glucose Tipo 4/metabolismo , Humanos , Mesilato de Imatinib , Morfolinas/farmacologia , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
5.
Clin Cancer Res ; 11(10): 3668-77, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15897563

RESUMO

PURPOSE: Gastrointestinal stromal tumors (GIST) are characterized by expressing a gain-of-function mutation in KIT, and to a lesser extent, PDGFR. Imatinib mesylate, a tyrosine kinase inhibitor, has activity against GISTs that contain oncogenic mutations of KIT. In this study, KIT and PDGFRalpha mutation status was analyzed and protein modeling approaches were used to assess the potential effect of KIT mutations in response to imatinib therapy. EXPERIMENTAL DESIGN: Genomic DNA was isolated from GIST tumors. Exons 9, 11, 13, and 17 of c-KIT and exons 12, 14, and 18 of PDGFRalpha were evaluated for oncogenic mutations. Protein modeling was used to assess mutations within the juxtamembrane region and the kinase domain of KIT. RESULTS: Mutations in KIT exons 9, 11, and 13 were identified in GISTs with the majority of changes involving the juxtamembrane region of KIT. Molecular modeling indicates that mutations in this region result in disruption of the KIT autoinhibited conformation, and lead to gain-of-function activation of the kinase. Furthermore, a novel germ-line mutation in KIT was identified that is associated with an autosomal dominant predisposition to the development of GIST. CONCLUSIONS: We have used protein modeling and structural analyses to elucidate why patients with GIST tumors containing exon 11 mutations are the most responsive to imatinib mesylate treatment. Importantly, mutations detected in this exon and others displayed constitutive activation of KIT. Furthermore, we have found tumors that are both KIT and PDGFRalpha mutation negative, suggesting that additional, yet unidentified, abnormalities may contribute to GIST tumorigenesis.


Assuntos
Antineoplásicos/farmacologia , Análise Mutacional de DNA , DNA de Neoplasias/análise , Tumores do Estroma Gastrointestinal/genética , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Pirimidinas/farmacologia , Adulto , Idoso , Sequência de Aminoácidos , Benzamidas , Transformação Celular Neoplásica , Cristalografia por Raios X , Feminino , Tumores do Estroma Gastrointestinal/fisiopatologia , Mutação em Linhagem Germinativa , Humanos , Mesilato de Imatinib , Masculino , Pessoa de Meia-Idade , Modelos Químicos , Dados de Sequência Molecular , Linhagem , Fator de Crescimento Derivado de Plaquetas/biossíntese , Fator de Crescimento Derivado de Plaquetas/genética , Conformação Proteica , Proteínas Proto-Oncogênicas c-kit/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA