Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 90(2): 311-324, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27165833

RESUMO

The kidney vasculature is critical for renal function, but its developmental assembly mechanisms remain poorly understood and models for studying its assembly dynamics are limited. Here, we tested whether the embryonic kidney contains endothelial cells (ECs) that are heterogeneous with respect to VEGFR2/Flk1/KDR, CD31/PECAM, and CD146/MCAM markers. Tie1Cre;R26R(YFP)-based fate mapping with a time-lapse in embryonic kidney organ culture successfully depicted the dynamics of kidney vasculature development and the correlation of the process with the CD31(+) EC network. Depletion of Tie1(+) or CD31(+) ECs from embryonic kidneys, with either Tie1Cre-induced diphtheria toxin susceptibility or cell surface marker-based sorting in a novel dissociation and reaggregation technology, illustrated substantial EC network regeneration. Depletion of the CD146(+) cells abolished this EC regeneration. Fate mapping of green fluorescent protein (GFP)-marked CD146(+)/CD31(-) cells indicated that they became CD31(+) cells, which took part in EC structures with CD31(+) wild-type ECs. EC network development depends on VEGF signaling, and VEGF and erythropoietin are expressed in the embryonic kidney even in the absence of any external hypoxic stimulus. Thus, the ex vivo embryonic kidney culture models adopted here provided novel ways for targeting renal EC development and demonstrated that CD146(+) cells are critical for kidney vasculature development.


Assuntos
Células Endoteliais/metabolismo , Rim/irrigação sanguínea , Rim/embriologia , Organogênese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Antígeno CD146/metabolismo , Separação Celular , Citometria de Fluxo , Imunofluorescência , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Vídeo , Técnicas de Cultura de Órgãos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
Nephrol Dial Transplant ; 26(12): 3843-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22121240

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the commonest cause of chronic kidney disease in children. Structural anomalies within the CAKUT spectrum include renal agenesis, kidney hypo-/dysplasia, multicystic kidney dysplasia, duplex collecting system, posterior urethral valves and ureter abnormalities. While most CAKUT cases are sporadic, familial clustering of CAKUT is common, emphasizing a strong genetic contribution to CAKUT origin. Animal experiments demonstrate that alterations in genes crucial for kidney development can cause experimental CAKUT, while expression studies implicate mislocalization and/or aberrant levels of the encoded proteins in human CAKUT. Further insight into the pathogenesis of CAKUT will improve strategies for early diagnosis, follow-up and treatment. Here, we outline a collaborative approach to identify and characterize novel factors underlying human CAKUT. This European consortium will share the largest collection of CAKUT patients available worldwide and undertake multidisciplinary research into molecular and genetic pathogenesis, with extension into translational studies to improve long-term patient outcomes.


Assuntos
Sistema Urinário/anormalidades , Animais , Pesquisa Biomédica/tendências , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/etiologia , Humanos , Rim/anormalidades , Rim/crescimento & desenvolvimento , Sistema Urinário/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA