Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(11)2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37296663

RESUMO

Cyclic nucleotide phosphodiesterases 2A (PDE2A) and PDE3A play an important role in the regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-to-cAMP crosstalk. Each of these PDEs has up to three distinct isoforms. However, their specific contributions to cAMP dynamics are difficult to explore because it has been challenging to generate isoform-specific knock-out mice or cells using conventional methods. Here, we studied whether the CRISPR/Cas9 approach for precise genome editing can be used to knock out Pde2a and Pde3a genes and their distinct isoforms using adenoviral gene transfer in neonatal and adult rat cardiomyocytes. Cas9 and several specific gRNA constructs were cloned and introduced into adenoviral vectors. Primary adult and neonatal rat ventricular cardiomyocytes were transduced with different amounts of Cas9 adenovirus in combination with PDE2A or PDE3A gRNA constructs and cultured for up to 6 (adult) or 14 (neonatal) days to analyze PDE expression and live cell cAMP dynamics. A decline in mRNA expression for PDE2A (~80%) and PDE3A (~45%) was detected as soon as 3 days post transduction, with both PDEs being reduced at the protein level by >50-60% in neonatal cardiomyocytes (after 14 days) and >95% in adult cardiomyocytes (after 6 days). This correlated with the abrogated effects of selective PDE inhibitors in the live cell imaging experiments based on using cAMP biosensor measurements. Reverse transcription PCR analysis revealed that only the PDE2A2 isoform was expressed in neonatal myocytes, while adult cardiomyocytes expressed all three PDE2A isoforms (A1, A2, and A3) which contributed to the regulation of cAMP dynamics as detected by live cell imaging. In conclusion, CRISPR/Cas9 is an effective tool for the in vitro knock-out of PDEs and their specific isoforms in primary somatic cells. This novel approach suggests distinct regulation of live cell cAMP dynamics by various PDE2A and PDE3A isoforms in neonatal vs. adult cardiomyocytes.


Assuntos
Sistemas CRISPR-Cas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Miócitos Cardíacos , Animais , Camundongos , Ratos , Sistemas CRISPR-Cas/genética , AMP Cíclico/metabolismo , Dietilestilbestrol , Miócitos Cardíacos/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Isoformas de Proteínas/metabolismo
2.
Cell Mol Neurobiol ; 43(7): 3511-3526, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37219662

RESUMO

The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.


Assuntos
Hidrocefalia , Fator de Transcrição AP-1 , Animais , Camundongos , Hidrocefalia/genética , Mutação/genética , Mutação Puntual/genética , Transdução de Sinais , Fator de Transcrição AP-1/genética
3.
Redox Biol ; 48: 102179, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34763298

RESUMO

3',5'-cyclic guanosine monophosphate (cGMP) is a druggable second messenger regulating cell growth and survival in a plethora of cells and disease states, many of which are associated with hypoxia. For example, in myocardial infarction and heart failure (HF), clinical use of cGMP-elevating drugs improves disease outcomes. Although they protect mice from ischemia/reperfusion (I/R) injury, the exact mechanism how cardiac cGMP signaling is regulated in response to hypoxia is still largely unknown. By monitoring real-time cGMP dynamics in murine and human cardiomyocytes using in vitro and in vivo models of hypoxia/reoxygenation (H/R) and I/R injury combined with biochemical methods, we show that hypoxia causes rapid but partial degradation of cGMP-hydrolyzing phosphodiesterase-3A (PDE3A) protein via the autophagosomal-lysosomal pathway. While increasing cGMP in hypoxia prevents cell death, partially reduced PDE3A does not change the pro-apoptotic second messenger 3',5'-cyclic adenosine monophosphate (cAMP). However, it leads to significantly enhanced protective effects of clinically relevant activators of nitric oxide-sensitive guanylyl cyclase (NO-GC). Collectively, our mouse and human data unravel a new mechanism by which cardiac cGMP improves hypoxia-associated disease conditions.

4.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003364

RESUMO

Alzheimer's disease (AD) is an age-related detrimental dementia. Amyloid beta peptides (Aß) play a crucial role in the pathology of AD. In familial AD, Aß are generated from the full-length amyloid beta precursor protein (APP) via dysregulated proteolytic processing; however, in the case of sporadic AD, the mechanism of Aß biogenesis remains elusive. circRNAs are a class of transcripts preferentially expressed in brain. We identified a circRNA harboring the Aß-coding region of the APP gene termed circAß-a. This circular RNA was detected in the brains of AD patients and non-dementia controls. With the aid of our recently established approach for analysis of circRNA functions, we demonstrated that circAß-a is efficiently translated into a novel Aß-containing Aß175 polypeptide (19.2 KDa) in both cultured cells and human brain. Furthermore, Aß175 was shown to be processed into Aß peptides-a hallmark of AD. In summary, our analysis revealed an alternative pathway of Aß biogenesis. Consequently, circAß-a and its corresponding translation product could potentially represent novel therapeutic targets for AD treatment. Importantly, our data point to yet another evolutionary route for potentially increasing proteome complexity by generating additional polypeptide variants using back-splicing of primary transcripts that yield circular RNA templates.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Sítios Internos de Entrada Ribossomal/genética , Íntrons , Espectrometria de Massas , Camundongos
5.
Front Immunol ; 11: 1157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670276

RESUMO

Background: The receptor for advanced glycation end products (RAGE) is a multiligand receptor involved in a number of processes and disorders. While it is known that RAGE-signaling can contribute to toxic liver damage and fibrosis, its role in acute inflammatory liver injury and septic multiorgan failure is yet undefined. We examined RAGE in lipopolysaccharide (LPS) induced acute liver injury of D-galN sensitized mice as a classical model for tumor necrosis factor alpha (TNF-α) dependent inflammatory organ damage. Methods: Mice (Rage-/- and C57BL/6) were intraperitoneally injected with D-galN (300 mg/kg) and LPS (10 µg/kg). Animals were monitored clinically, and cytokines, damage associated molecular pattern molecules (DAMPs) as well as liver enzymes were determined in serum. Liver histology, hepatic cytokines as well as RAGE mRNA expression were analyzed. Cellular activation and functionality were evaluated by flow cytometry both in bone marrow- and liver-derived cells. Results: Genetic deficiency of RAGE significantly reduced the mortality of mice exposed to LPS/D-galN. Hepatocyte damage markers were reduced in Rage-/- mice, and liver histopathology was less severe. Rage-/- mice produced less pro-inflammatory cytokines and DAMPs in serum and liver. While immune cell functions appeared normal, TNF-α production by hepatocytes was reduced in Rage-/- mice. Conclusions: We found that RAGE deletion attenuated the expression of pro-inflammatory cytokines and DAMPs in hepatocytes without affecting cellular immune functions in the LPS/D-galN model of murine liver injury. Our data highlight the importance of tissue-specific RAGE-signaling also in acute inflammatory liver stress contributing to sepsis and multiorgan failure.


Assuntos
Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Falência Hepática Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sepse/complicações , Sepse/metabolismo , Sepse/patologia
6.
J Allergy Clin Immunol ; 146(5): 1137-1151, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32199911

RESUMO

BACKGROUND: Scavenger receptor CD163 is exclusively expressed on monocytes/macrophages and is widely used as a marker for alternatively activated macrophages. However, the role of CD163 is not yet clear. OBJECTIVES: We sought to examine the function of CD163 in steady-state as well as in sterile and infectious inflammation. METHODS: Expression of CD163 was analyzed under normal and inflammatory conditions in mice. Functional relevance of CD163 was investigated in models of inflammation in wild-type and CD163-/- mice. RESULTS: We describe a subpopulation of bone marrow-resident macrophages (BMRMs) characterized by a high expression of CD163 and functionally distinct from classical bone marrow-derived macrophages. Development of CD163+ BMRMs is strictly dependent on IFN regulatory factor-8. CD163+ BMRMs show a specific transcriptome and cytokine secretion pattern demonstrating a specific immunomodulatory profile of these cells. Accordingly, CD163-/- mice show a stronger inflammation in allergic contact dermatitis, indicating a regulatory role of CD163. However, CD163-/- mice are highly susceptible to S aureus infections, demonstrating the relevance of CD163 for antimicrobial defense as well. CONCLUSIONS: Our data indicate that anti-inflammatory and immunosuppressive mechanisms are not necessarily associated with a decreased antimicrobial activity. In contrast, our data define a novel macrophage population that controls overwhelming inflammation on one hand but is also necessary for an effective control of infections on the other hand.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células da Medula Óssea/metabolismo , Dermatite Alérgica de Contato/imunologia , Inflamação/imunologia , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Células da Medula Óssea/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imunomodulação , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Transcriptoma
7.
Sci Rep ; 9(1): 11684, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406268

RESUMO

Circular RNAs (circRNAs) are an emerging class of RNA molecules that have been linked to human diseases and important regulatory pathways. Their functional roles are still under investigation, often hampered by inefficient circRNA formation in and ex vivo. We generated an intron-mediated enhancement (IME) system that-in comparison to previously published methods-increases circRNA formation up to 5-fold. This strategy also revealed previously undetected translation of circRNA, e.g., circRtn4. Substantiated by Western blots and mass spectrometry we showed that in mammalian cells, translation of circRtn4 containing a potential "infinite" circular reading frame resulted in "monomers" and extended proteins, presumably "multimer" tandem repeats. In order to achieve high levels of circRNA formation and translation of other natural or recombinant circRNAs, we constructed a versatile circRNA expression vector-pCircRNA-DMo. We demonstrated the general applicability of this method by efficiently generating two additional circRNAs exhibiting high expression levels. The circRNA expression vector will be an important tool to investigate different aspects of circRNA biogenesis and to gain insights into mechanisms of circular RNA translation.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Biossíntese de Proteínas , RNA Circular/genética , RNA Mensageiro/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Éxons , Células HEK293 , Humanos , Íntrons , Camundongos , MicroRNAs/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , RNA Circular/química , RNA Circular/metabolismo , RNA Mensageiro/metabolismo
8.
Brain Struct Funct ; 224(6): 2213-2230, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31183559

RESUMO

The palmitoyl acyltransferase ZDHHC7 belongs to the DHHC family responsible for the covalent attachment of palmitic acid (palmitoylation) to target proteins. Among synaptic proteins, its main targets are sex steroid receptors such as the estrogen receptors. When palmitoylated, these couple to membrane microdomains and elicit non-genomic rapid responses. Such coupling is found particularly in cortico-limbic brain areas which impact structure, function, and behavioral outcomes. Thus far, the functional role of ZDHHC7 has not been investigated in this context. To directly analyze an impact of ZDHHC7 on brain anatomy, microstructure, connectivity, function, and behavior, we generated a mutant mouse in which the Zdhhc7 gene is constitutively inactivated. Male and female Zdhhc7-/- mice were phenotypically compared with wild-type mice using behavioral tests, electrophysiology, protein analyses, and neuroimaging with diffusion tensor-based fiber tractography. Zdhhc7-deficiency impaired excitatory transmission, synaptic plasticity at hippocampal Schaffer collateral CA1 synapses, and hippocampal structural connectivity in both sexes in similar manners. Effects on both sexes but in different manners appeared in medial prefrontal cortical synaptic transmission and in hippocampal microstructures. Finally, Zdhhc7-deficiency affected anxiety-related behaviors exclusively in females. Our data demonstrated the importance of Zdhhc7 for assembling proper brain structure, function, and behavior on a system level in mice in a sex-related manner. Given the prominent role of sex-specificity also in humans and associated mental disorders, Zdhhc7-/- mice might provide a promising model for in-depth investigation of potentially underlying sex-specifically altered mechanisms.


Assuntos
Aciltransferases/deficiência , Comportamento Animal/fisiologia , Plasticidade Neuronal/genética , Fatores Sexuais , Transmissão Sináptica/genética , Animais , Ansiedade/genética , Potenciais Pós-Sinápticos Excitadores/genética , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/metabolismo , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
9.
J Biol Chem ; 294(18): 7202-7218, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737279

RESUMO

Whereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of Myo18a in mouse is embryonic lethal. Reminiscent of Myo18b, Myo18a was highly expressed in the embryo heart, and cardiac-restricted Myo18a deletion in mice was embryonic lethal. Surprisingly, using Western blot analysis, we were unable to detect the known isoforms of Myo18A, Myo18Aα and Myo18Aß, in mouse heart using a custom C-terminal antibody. However, alternative anti-Myo18A antibodies detected a larger than expected protein, and RNA-Seq analysis indicated that a novel Myo18A transcript is expressed in mouse ventricular myocytes (and human heart). Cloning and sequencing revealed that this cardiac isoform, denoted Myo18Aγ, lacks the PDZ-containing N terminus of Myo18Aα but includes an alternative N-terminal extension and a long serine-rich C terminus. EGFP-tagged Myo18Aγ expressed in ventricular myocytes localized to the level of A-bands in sarcomeres, and Myo18a knockout embryos at day 10.5 exhibited disorganized sarcomeres with wavy thick filaments. We additionally generated myeloid-restricted Myo18a knockout mice to investigate the role of Myo18A in nonmuscle cells, exemplified by macrophages, which express more Myo18Aß than Myo18Aα, but no defects in cell shape, motility, or Golgi shape were detected. In summary, we have identified a previously unrecognized sarcomere component, a large novel isoform (denoted Myo18Aγ) of Myo18A. Thus, both members of class XVIII myosins are critical components of cardiac sarcomeres.


Assuntos
Miocárdio/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Animais , Deleção de Genes , Genes Letais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miosinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
10.
Sci Rep ; 9(1): 597, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679680

RESUMO

We investigated the physiological functions of Myo10 (myosin X) using Myo10 reporter knockout (Myo10tm2) mice. Full-length (motorized) Myo10 protein was deleted, but the brain-specific headless (Hdl) isoform (Hdl-Myo10) was still expressed in homozygous mutants. In vitro, we confirmed that Hdl-Myo10 does not induce filopodia, but it strongly localized to the plasma membrane independent of the MyTH4-FERM domain. Filopodia-inducing Myo10 is implicated in axon guidance and mice lacking the Myo10 cargo protein DCC (deleted in colorectal cancer) have severe commissural defects, whereas MRI (magnetic resonance imaging) of isolated brains revealed intact commissures in Myo10tm2/tm2 mice. However, reminiscent of Waardenburg syndrome, a neural crest disorder, Myo10tm2/tm2 mice exhibited pigmentation defects (white belly spots) and simple syndactyly with high penetrance (>95%), and 24% of mutant embryos developed exencephalus, a neural tube closure defect. Furthermore, Myo10tm2/tm2 mice consistently displayed bilateral persistence of the hyaloid vasculature, revealed by MRI and retinal whole-mount preparations. In principle, impaired tissue clearance could contribute to persistence of hyaloid vasculature and syndactyly. However, Myo10-deficient macrophages exhibited no defects in the phagocytosis of apoptotic or IgG-opsonized cells. RNA sequence analysis showed that Myo10 was the most strongly expressed unconventional myosin in retinal vascular endothelial cells and expression levels increased 4-fold between P6 and P15, when vertical sprouting angiogenesis gives rise to deeper layers. Nevertheless, imaging of isolated adult mutant retinas did not reveal vascularization defects. In summary, Myo10 is important for both prenatal (neural tube closure and digit formation) and postnatal development (hyaloid regression, but not retinal vascularization).


Assuntos
Encéfalo/metabolismo , Miosinas/genética , Animais , Encéfalo/diagnóstico por imagem , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Genótipo , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Miosinas/química , Miosinas/metabolismo , Fagocitose , Fenótipo , Isoformas de Proteínas/metabolismo , Pseudópodes/metabolismo , Pele/metabolismo , Pele/patologia
11.
Am J Pathol ; 187(11): 2388-2398, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28823868

RESUMO

Four and a half LIM domain protein 2 (Fhl2) is an intracellular adaptor molecule with a high protein-protein interaction capacity. It acts as a modulator of several signaling molecules in the cytosol and as a cofactor of transcription in the nucleus. Recent studies suggest the role of Fhl2 in tissue repair and the anti-inflammatory response. Herein, we show that Fhl2-deficient mice develop a more severe psoriatic arthritis disease under induction of the inducible human tumor necrosis factor (hTNF) transgene than wild-type mice. The disease was accompanied by increased infiltration of activated macrophages and T regulatory cells in skin and digit joints as well as by increased expression of matrix metalloproteases and bone-specific proteases. The more severe pathogenesis of psoriatic arthritis in Fhl2 knockout mice coincided with enhanced levels of soluble hTNF cytokine, but surprisingly not with transcription of the hTNF transgene. Studying the shedding of cell membrane-bound hTNF by Adam17, a known Fhl2 interacting protein, revealed an enhanced release of TNF in the absence of Fhl2. In summary, our results show that Fhl2 anticipates the emerging inflammation and specifically the development of psoriatic arthritis by impeding the Adam17-mediated release of TNF.


Assuntos
Proteína ADAM17/metabolismo , Artrite Psoriásica/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Artrite Psoriásica/genética , Células Cultivadas , Proteínas de Homeodomínio/metabolismo , Humanos , Inflamação/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos Knockout , Proteínas Musculares/genética , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Oncotarget ; 8(7): 11950-11962, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28060762

RESUMO

Hepatocellular carcinoma is a cancer with increasing incidence and largely refractory to current anticancer drugs. Since Sorafenib, a multikinase inhibitor has shown modest efficacy in advanced hepatocellular carcinoma additional treatments are highly needed. Protein phosphorylation via kinases is an important post-translational modification to regulate cell homeostasis including proliferation and apoptosis. Therefore kinases are valuable targets in cancer therapy. To this end we performed 2D differential gel electrophoresis and mass spectrometry analysis of phosphoprotein-enriched lysates of tumor and corresponding non-tumorous liver samples to detect differentially abundant phosphoproteins to screen for novel kinases as potential drug targets. We identified 34 differentially abundant proteins in phosphoprotein enriched lysates. Expression and distribution of the candidate protein eEF2 and its phosphorylated isoform was validated immunohistochemically on 78 hepatocellular carcinoma and non-tumorous tissue samples. Validation showed that total eEF2 and phosphorylated eEF2 at threonine 56 are prognostic markers for overall survival of HCC-patients. The activity of the regulating eEF2 kinase, compared between tumor and non-tumorous tissue lysates by in vitro kinase assays, is more than four times higher in tumor tissues. Functional analyzes regarding eEF2 kinase were performed in JHH5 cells with CRISPR/Cas9 mediated eEF2 kinase knock out. Proliferation and growth is decreased in eEF2 kinase knock out cells. CONCLUSION: eEF2 and phosphorylated eEF2 are prognostic markers for survival of hepatocellular carcinoma patients and the regulating eEF2 kinase is a potential drug target for tumor therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prognóstico , Transdução de Sinais
13.
Ann Rheum Dis ; 74(12): 2216-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25125695

RESUMO

OBJECTIVE: We analysed the role of the adaptor molecule four-and-a-half Lin11, Isl-1 & Mec-3 (LIM) domain protein 2 (FHL2) in the activation of fibroblast-like synoviocytes in human rheumatoid arthritis (RA) and tumour necrosis factor α (TNFα)-dependent animal models of the disease. METHODS: Synovial tissues of patients with RA and osteoarthritis (OA) as well as hind paw sections from arthritic human TNFα transgenic (hTNFtg) mice and synovial fibroblasts from these were analysed. The effects of cytokines on the expression of FHL2 and disease-relevant matrixmetalloproteases (MMPs) were determined. Analyses of human tissue specimens from patients treated with anti-TNFα as well as anti-TNFα treatment of hTNFtg mice were performed to substantiate the TNFα effects on FHL2 levels. FHL2(-/-) mice and hTNFtg mice (with constitutive or inducible transgene expression) were crossbred to generate TNFα overexpressing FHL2-deficient animals. Signalling pathways were analysed in cells from these mice and in human cells after knock down of FHL2 by western blot. RESULTS: FHL2 levels were higher in RA than in OA and in hTNFtg than in wild-type mice. Surprisingly, while transforming growth factor (TGF)ß-induced FHL2 expression, TNFα suppressed FHL2. In vivo, anti-TNFα treatment led to higher FHL2 levels both in RA patients and hTNFtg mice. The loss of FHL2 increased joint destruction in hTNFtg mice, which was accompanied by elevated MMP-13. In vitro, TNFα-mediated MMP-13 was significantly higher in FHL2(-/-) cells and after knock down of FHL2, which was caused by prolonged p38 MAPK activation. CONCLUSIONS: These data suggest that FHL2 serves as a protective factor and that, rather than promoting the pathology, the upregulation of FHL2 in RA occurs in frame of a regenerative attempt.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Proteínas com Homeodomínio LIM/genética , Proteínas Musculares/genética , Osteoartrite/genética , Membrana Sinovial/metabolismo , Fatores de Transcrição/genética , Animais , Células Cultivadas , Doença Crônica , Humanos , Immunoblotting , Proteínas com Homeodomínio LIM/biossíntese , Camundongos , Camundongos Transgênicos , Proteínas Musculares/biossíntese , Osteoartrite/metabolismo , Osteoartrite/patologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Membrana Sinovial/patologia , Fatores de Transcrição/biossíntese
14.
Pflugers Arch ; 467(6): 1203-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24974903

RESUMO

Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.


Assuntos
Sinalização do Cálcio , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Anoctamina-1 , Anoctaminas , Cálcio/metabolismo , Canais de Cloreto/genética , Camundongos , Especificidade de Órgãos , Proteínas de Transferência de Fosfolipídeos/genética
15.
Mol Biol Evol ; 31(7): 1710-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682284

RESUMO

The scaffolding protein KIBRA (also called WWC1) is involved in the regulation of important intracellular transport processes and the establishment of cell polarity. Furthermore, KIBRA/WWC1 is an upstream regulator of the Hippo signaling pathway that controls cell proliferation and organ size in animals. KIBRA/WWC1 represents only one member of the WWC protein family that also includes the highly similar proteins WWC2 and WWC3. Although the function of KIBRA/WWC1 was studied intensively in cells and animal models, the importance of WWC2 and WWC3 was not yet elucidated. Here, we describe evolutionary, molecular, and functional aspects of the WWC family. We show that the WWC genes arose in the ancestor of bilateral animals (clades such as insects and vertebrates) from a single founder gene most similar to the present KIBRA/WWC1-like sequence of Drosophila. This situation was still maintained until the common ancestor of lancelet and vertebrates. In fish, a progenitor-like sequence of mammalian KIBRA/WWC1 and WWC2 is expressed together with WWC3. Finally, in all tetrapods, the three family members, KIBRA/WWC1, WWC2, and WWC3, are found, except for a large genomic deletion including WWC3 in Mus musculus. At the molecular level, the highly conserved WWC proteins share a similar primary structure, the ability to form homo- and heterodimers and the interaction with a common set of binding proteins. Furthermore, all WWC proteins negatively regulate cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP, the major effector of the Hippo pathway.


Assuntos
Proteínas de Transporte/genética , Fosfoproteínas/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas de Transporte/metabolismo , Proliferação de Células , Evolução Molecular , Células HEK293 , Humanos , Família Multigênica , Especificidade de Órgãos , Fosfoproteínas/metabolismo , Filogenia , Deleção de Sequência , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
16.
Nat Commun ; 5: 3738, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24769558

RESUMO

To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.


Assuntos
Anexinas/metabolismo , Adesão Celular/imunologia , Células Endoteliais/imunologia , Leucócitos/imunologia , Modelos Imunológicos , Tetraspanina 30/metabolismo , Corpos de Weibel-Palade/metabolismo , Análise de Variância , Animais , Anticorpos Monoclonais , Southern Blotting , Western Blotting , Primers do DNA/genética , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos/metabolismo , Camundongos , Microscopia de Força Atômica , Selectina-P/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
17.
J Neurochem ; 128(5): 686-700, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24117625

RESUMO

The WWC1 gene has been genetically associated with human episodic memory performance, and its product KIdney/BRAin protein (KIBRA) has been shown to interact with the atypical protein kinase protein kinase M ζ (PKMζ). Although recently challenged, PKMζ remains a candidate postsynaptic regulator of memory maintenance. Here, we show that PKMζ is subject to rapid proteasomal degradation and that KIBRA is both necessary and sufficient to counteract this process, thus stabilizing the kinase and maintaining its function for a prolonged time. We define the binding sequence on KIBRA, a short amino acid motif near the C-terminus. Both hippocampal knock-down of KIBRA in rats and KIBRA knock-out in mice result in decreased learning and memory performance in spatial memory tasks supporting the notion that KIBRA is a player in episodic memory. Interestingly, decreased memory performance is accompanied by decreased PKMζ protein levels. We speculate that the stabilization of synaptic PKMζ protein levels by KIBRA may be one mechanism by which KIBRA acts in memory maintenance. KIBRA/WWC1 has been genetically associated with human episodic memory. KIBRA has been shown to be post-synaptically localized, but its function remained obscure. Here, we show that KIBRA shields PKMζ, a kinase previously linked to memory maintenance, from proteasomal degradation via direct interaction. KIBRA levels in the rodent hippocampus correlate closely both to spatial memory performance in rodents and to PKMζ levels. Our findings support a role for KIBRA in memory, and unveil a novel function for this protein.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas Correpressoras/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Proteína Quinase C/fisiologia , Sequência de Aminoácidos , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Western Blotting , Proteínas de Transporte/metabolismo , Proteínas Correpressoras/metabolismo , Dependovirus/genética , Teste de Complementação Genética , Hipocampo/metabolismo , Hipocampo/fisiologia , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Dados de Sequência Molecular , Fosfoproteínas , Reação em Cadeia da Polimerase , Ligação Proteica , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Técnicas Estereotáxicas
18.
Arthritis Rheum ; 65(9): 2290-300, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23740547

RESUMO

OBJECTIVE: To generate doxycycline-inducible human tumor necrosis factor α (TNFα)-transgenic mice to overcome a major disadvantage of existing transgenic mice with constitutive expression of TNFα, which is the limitation in crossing them with various knockout or transgenic mice. METHODS: A transgenic mouse line that expresses the human TNFα cytokine exclusively after doxycycline administration was generated and analyzed for the onset of diseases. RESULTS: Doxycycline-inducible human TNFα-transgenic mice developed an inflammatory arthritis- and psoriasis-like phenotype, with fore and hind paws being prominently affected. The formation of "sausage digits" with characteristic involvement of the distal interphalangeal joints and nail malformation was observed. Synovial hyperplasia, enthesitis, cartilage and bone alterations, formation of pannus tissue, and inflammation of the skin epidermis and nail matrix appeared as early as 1 week after the treatment of mice with doxycycline and became aggravated over time. The abrogation of human TNFα expression by the removal of doxycycline 6 weeks after beginning stimulation resulted in fast resolution of the most advanced macroscopic and histologic disorders, and 3-6 weeks later, only minimal signs of disease were visible. CONCLUSION: Upon doxycycline administration, the doxycycline-inducible human TNFα-transgenic mouse displays the major features of inflammatory arthritis. It represents a unique animal model for studying the molecular mechanisms of arthritis, especially the early phases of disease genesis and tissue remodeling steps upon abrogation of TNFα expression. Furthermore, unlimited crossing of doxycycline-inducible human TNFα-transgenic mice with various knockout or transgenic mice opens new possibilities for unraveling the role of various signaling molecules acting in concert with TNFα.


Assuntos
Artrite Experimental/genética , Artrite Psoriásica/genética , Fator de Necrose Tumoral alfa/genética , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Psoriásica/metabolismo , Artrite Psoriásica/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Inflamação/patologia , Articulações/metabolismo , Articulações/patologia , Camundongos , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/metabolismo
19.
Proc Natl Acad Sci U S A ; 108(45): 18500-5, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22027011

RESUMO

Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca(2+)](i) increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca(2+) levels. This pathway involves the activation of Ca(2+)-permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca(2+) channels and ultimately increases myocyte Ca(2)(+)(i) levels. These observations reveal a dual role of the ANP/GC-A-signaling pathway in the regulation of cardiac myocyte Ca(2+)(i) homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca(2+)(i)-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca(2+)](i) might increase the propensity to cardiac hypertrophy and arrhythmias.


Assuntos
Fator Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Miocárdio/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos
20.
J Biol Chem ; 286(32): 28210-22, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21540187

RESUMO

The cell cycle is driven by the kinase activity of cyclin·cyclin-dependent kinase (CDK) complexes, which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as an interaction partner and a substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin-binding site in the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inhibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, whereas it was induced by cell cycle arrest. We established a deletional mouse model that showed increased CDK2 activity in spleen with altered spleen architecture in Inca1(-/-) mice. Inca1(-/-) embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from acute lymphoid leukemia and acute myeloid leukemia patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control in vivo. Taken together, this study identifies a novel CDK inhibitor with reduced expression in acute myeloid and lymphoid leukemia. The molecular events that control the cell cycle occur in a sequential process to ensure a tight regulation, which is important for the survival of a cell and includes the detection and repair of genetic damage and the prevention of uncontrolled cell division.


Assuntos
Crise Blástica/metabolismo , Proteínas de Transporte/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fase S , Transdução de Sinais , Animais , Crise Blástica/genética , Crise Blástica/patologia , Proteínas de Transporte/genética , Linhagem Celular , Sobrevivência Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA