Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(5): 111578, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323247

RESUMO

Long-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood. Here we show that the Rb/E2F axis functions by linking the cell-cycle machinery to pivotal regulators of NSC fate. Deletion of Rb family proteins results in activation of NSCs, inducing a transcriptomic transition toward activation. Deletion of their target activator E2Fs1/3 results in intractable quiescence and cessation of neurogenesis. We show that the Rb/E2F axis mediates these fate transitions through regulation of factors essential for NSC function, including REST and ASCL1. Thus, the Rb/E2F axis is an important regulator of NSC fate, coordinating cell-cycle control with NSC activation and quiescence fate transitions.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/metabolismo , Neurogênese/fisiologia , Divisão Celular , Ciclo Celular , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
2.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136598

RESUMO

Preterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties. While neural progenitor cells (NPCs) are crucial for proper brain development, it is unclear whether they play a role in BPD-associated neurodevelopmental deficits. Here, we show that hyperoxia-induced experimental BPD in newborn mice led to lifelong impairments in cerebrovascular structure and function as well as impairments in NPC self-renewal and neurogenesis. A neurosphere assay utilizing nonhuman primate preterm baboon NPCs confirmed impairment in NPC function. Moreover, gene expression profiling revealed that genes involved in cell proliferation, angiogenesis, vascular autoregulation, neuronal formation, and neurotransmission were dysregulated following neonatal hyperoxia. These impairments were associated with motor and cognitive decline in aging hyperoxia-exposed mice, reminiscent of deficits observed in patients with BPD. Together, our findings establish a relationship between BPD and abnormal neurodevelopmental outcomes and identify molecular and cellular players of neonatal brain injury that persist throughout adulthood that may be targeted for early intervention to aid this vulnerable patient population.


Assuntos
Displasia Broncopulmonar , Disfunção Cognitiva , Hiperóxia , Nascimento Prematuro , Recém-Nascido , Feminino , Camundongos , Humanos , Animais , Hiperóxia/complicações , Hiperóxia/metabolismo , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Neurogênese , Disfunção Cognitiva/etiologia , Cognição , Pulmão/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118854, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926942

RESUMO

Mitochondria are highly dynamic organelles. Alterations in mitochondrial dynamics are causal or are linked to numerous neurodegenerative, neuromuscular, and metabolic diseases. It is generally thought that cells with altered mitochondrial structure are prone to mitochondrial dysfunction, increased reactive oxygen species generation and widespread oxidative damage. The objective of the current study was to investigate the relationship between mitochondrial dynamics and the master cellular antioxidant, glutathione (GSH). We reveal that mouse embryonic fibroblasts (MEFs) lacking the mitochondrial fusion machinery display elevated levels of GSH, which limits oxidative damage. Moreover, targeted metabolomics and 13C isotopic labeling experiments demonstrate that cells lacking the inner membrane fusion GTPase OPA1 undergo widespread metabolic remodeling altering the balance of citric acid cycle intermediates and ultimately favoring GSH synthesis. Interestingly, the GSH precursor and antioxidant n-acetylcysteine did not increase GSH levels in OPA1 KO cells, suggesting that cysteine is not limiting for GSH production in this context. Post-mitotic neurons were unable to increase GSH production in the absence of OPA1. Finally, the ability to use glycolysis for ATP production was a requirement for GSH accumulation following OPA1 deletion. Thus, our results demonstrate a novel role for mitochondrial fusion in the regulation of GSH synthesis, and suggest that cysteine availability is not limiting for GSH synthesis in conditions of mitochondrial fragmentation. These findings provide a possible explanation for the heightened sensitivity of certain cell types to alterations in mitochondrial dynamics.


Assuntos
Antioxidantes/metabolismo , Glutationa/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/genética , GTP Fosfo-Hidrolases/genética , Glutationa/biossíntese , Glicólise/genética , Humanos , Fusão de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Cell Death Dis ; 11(5): 321, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371858

RESUMO

Mitochondria play a crucial role in neuronal survival through efficient energy metabolism. In pathological conditions, mitochondrial stress leads to neuronal death, which is regulated by the anti-apoptotic BCL-2 family of proteins. MCL-1 is an anti-apoptotic BCL-2 protein localized to mitochondria either in the outer membrane (OM) or inner membrane (Matrix), which have distinct roles in inhibiting apoptosis and promoting bioenergetics, respectively. While the anti-apoptotic role for Mcl1 is well characterized, the protective function of MCL-1 Matrix remains poorly understood. Here, we show MCL-1OM and MCL-1Matrix prevent neuronal death through distinct mechanisms. We report that MCL-1Matrix functions to preserve mitochondrial energy transduction and improves respiratory chain capacity by modulating mitochondrial oxygen consumption in response to mitochondrial stress. We show that MCL-1Matrix protects neurons from stress by enhancing respiratory function, and by inhibiting mitochondrial permeability transition pore opening. Taken together, our results provide novel insight into how MCL-1Matrix may confer neuroprotection under stress conditions involving loss of mitochondrial function.


Assuntos
Sobrevivência Celular/genética , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neurônios/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular/genética , Humanos , Camundongos , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
J Biol Chem ; 294(21): 8617-8629, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30967472

RESUMO

We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.


Assuntos
Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F4/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Proteínas Repressoras/biossíntese , Acidente Vascular Cerebral/metabolismo , Transativadores/biossíntese , Motivos de Aminoácidos , Animais , Morte Celular , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F4/genética , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Proteínas Repressoras/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Transativadores/genética
6.
J Neurochem ; 150(3): 312-329, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30734931

RESUMO

Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Neurônios/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Doença de Parkinson/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
7.
Cell Death Dis ; 10(2): 135, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755590

RESUMO

The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Morte Celular/genética , Estresse do Retículo Endoplasmático/genética , Proteína Desglicase DJ-1/metabolismo , Resposta a Proteínas não Dobradas , Regulação para Cima , Fator 4 Ativador da Transcrição/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Fibroblastos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Estresse Oxidativo/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , RNA Mensageiro/metabolismo
8.
J Vis Exp ; (129)2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29155785

RESUMO

Cerebellar granule neurons (CGNs) are a commonly used neuronal model, forming an abundant homogeneous population in the cerebellum. In light of their post-natal development, abundance, and accessibility, CGNs are an ideal model to study neuronal processes, including neuronal development, neuronal migration, and physiological neuronal activity stimulation. In addition, CGN cultures provide an excellent model for studying different modes of cell death including excitotoxicity and apoptosis. Within a week in culture, CGNs express N-methyl-D-aspartate (NMDA) receptors, a specific ionotropic glutamate receptor with many critical functions in neuronal health and disease. The addition of low concentrations of NMDA in conjunction with membrane depolarization to rodent primary CGN cultures has been used to model physiological neuronal activity stimulation while the addition of high concentrations of NMDA can be employed to model excitotoxic neuronal injury. Here, a method of isolation and culturing of CGNs from 6 day old pups as well as genetic manipulation of CGNs by adenoviruses and lentiviruses are described. We also present optimized protocols on how to stimulate NMDA-induced excitotoxicity, low-potassium-induced apoptosis, oxidative stress and DNA damage following transduction of these neurons.


Assuntos
Cerebelo/citologia , Neurônios/citologia , Animais , Apoptose , Morte Celular , Células Cultivadas , Cerebelo/metabolismo , Camundongos , Transfecção
9.
J Neurosci ; 37(28): 6729-6740, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607169

RESUMO

Dysregulation of cell cycle machinery is implicated in a number of neuronal death contexts, including stroke. Increasing evidence suggests that cyclin-dependent kinases (Cdks) are inappropriately activated in mature neurons under ischemic stress conditions. We previously demonstrated a functional role for the cyclin D1/Cdk4/pRb (retinoblastoma tumor suppressor protein) pathway in delayed neuronal death induced by ischemia. However, the molecular signals leading to cyclin D/Cdk4/pRb activation following ischemic insult are presently not clear. Here, we investigate the cell division cycle 25 (Cdc25) dual-specificity phosphatases as potential upstream regulators of ischemic neuronal death and Cdk4 activation. We show that a pharmacologic inhibitor of Cdc25 family members (A, B, and C) protects mouse primary neurons from hypoxia-induced delayed death. The major contributor to the death process appears to be Cdc25A. shRNA-mediated knockdown of Cdc25A protects neurons in a delayed model of hypoxia-induced death in vitro Similar results were observed in vivo following global ischemia in the rat. In contrast, neurons singly or doubly deficient for Cdc25B/C were not significantly protective. We show that Cdc25A activity, but not level, is upregulated in vitro following hypoxia and global ischemic insult in vivo Finally, we show that shRNA targeting Cdc25A blocks Ser795 pRb phosphorylation. Overall, our results indicate a role for Cdc25A in delayed neuronal death mediated by ischemia.SIGNIFICANCE STATEMENT A major challenge in stroke is finding an effective neuroprotective strategy to treat cerebral ischemic injury. Cdc25 family member A (Cdc25A) is a phosphatase normally activated during cell division in proliferating cells. We found that Cdc25A is activated in neurons undergoing ischemic stress mediated by hypoxia in vitro and global cerebral ischemia in rats in vivo We show that pharmacologic or genetic inhibition of Cdc25A activity protects neurons from delayed death in vitro and in vivo Downregulation of Cdc25A led to reduction in retinoblastoma tumor suppressor protein (pRb) phosphorylation. An increase in pRb phosphorylation has been previously linked to ischemic neuronal death. Our results identify Cdc25A as a potential target for neuroprotectant strategy for the treatment of delayed ischemic neuronal death.


Assuntos
Apoptose , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosfatases cdc25/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
10.
Neurogenesis (Austin) ; 4(1): e1270382, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28229086

RESUMO

The fundamental mechanisms underlying adult neurogenesis remain to be fully clarified. Members of the cell cycle machinery have demonstrated key roles in regulating adult neural stem cell (NSC) quiescence and the size of the adult-born neuronal population. The retinoblastoma protein, Rb, is known to possess CNS-specific requirements that are independent from its classical role as a tumor suppressor. The recent study by Vandenbosch et al. has clarified distinct requirements for Rb during adult neurogenesis, in the restriction of proliferation, as well as long-term adult-born neuronal survival. However, Rb is no longer believed to be the main cell cycle regulator maintaining the quiescence of adult NSCs. Future studies must consider Rb as part of a larger network of regulatory effectors, including the other members of the Rb family, p107 and p130. This will help elucidate the contribution of Rb and other pocket proteins in the context of adult neurogenesis, and define its crucial role in regulating the size and fate of the neurogenic niche.

11.
Hippocampus ; 26(11): 1379-1392, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27325572

RESUMO

In mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown. Here, we show that loss of RB during embryogenesis induces massive ectopic proliferation and delayed cell cycle exit of young DGCs specifically at late developmental stages but without affecting stem cells. This phenotype was partially counterbalanced by increased cell death. Similarly, during adulthood, loss of RB causes ectopic proliferation of newborn DGCs and dramatically impairs their survival. These results demonstrate a crucial role for RB in the generation and the survival of DGCs in the embryonic and the adult brain. © 2016 Wiley Periodicals, Inc.


Assuntos
Giro Denteado/citologia , Giro Denteado/embriologia , Neurogênese/genética , Neurônios/fisiologia , Proteína do Retinoblastoma/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Embrião de Mamíferos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina/genética , Nestina/metabolismo , Proteína do Retinoblastoma/genética , Fatores de Transcrição SOXB1/metabolismo
12.
Cell Stem Cell ; 19(2): 232-247, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27237737

RESUMO

Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming.


Assuntos
Linhagem da Célula , Núcleo Celular/genética , Dinâmica Mitocondrial , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/farmacologia , Animais , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Núcleo Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Deleção de Genes , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
13.
Diabetologia ; 58(12): 2861-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26404066

RESUMO

AIMS/HYPOTHESIS: Skeletal muscle mitochondrial dysfunction has been documented in patients with type 2 diabetes mellitus; however, specific respiratory defects and their mechanisms are poorly understood. The aim of the current study was to examine oxidative phosphorylation and electron transport chain (ETC) supercomplex assembly in rectus abdominis muscles of 10 obese diabetic and 10 obese non-diabetic individuals. METHODS: Twenty obese women undergoing Roux-en-Y gastric bypass surgery were recruited for this study. Muscle samples were obtained intraoperatively and subdivided for multiple analyses, including high-resolution respirometry and assessment of supercomplex assembly. Clinical data obtained from referring physicians were correlated with laboratory findings. RESULTS: Participants in both groups were of a similar age, weight and BMI. Mitochondrial respiration rates were markedly reduced in diabetic vs non-diabetic patients. This defect was observed during maximal ADP-stimulated respiration in the presence of complex I-linked substrates and complex I- and II-linked substrates, and during maximal uncoupled respiration. There were no differences in fatty acid (octanoyl carnitine) supported respiration, leak respiration or isolated activity of cytochrome c oxidase. Intriguingly, significant correlations were found between glycated haemoglobin (HbA1c) levels and maximal respiration or respiration supported by complex I, complex I and II or fatty acid. In the muscle of diabetic patients, blue native gel electrophoresis revealed a striking decrease in complex I, III and IV containing ETC supercomplexes. CONCLUSIONS/INTERPRETATION: These findings support the hypothesis that ETC supercomplex assembly may be an important underlying mechanism of muscle mitochondrial dysfunction in type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Fosforilação Oxidativa , Reto do Abdome/metabolismo , Difosfato de Adenosina/farmacologia , Adulto , Diabetes Mellitus Tipo 2/tratamento farmacológico , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Feminino , Hemoglobinas Glicadas/análise , Humanos , Músculo Esquelético/metabolismo
14.
J Vis Exp ; (95): 51983, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25650557

RESUMO

Genetic deletion using the Cre-Lox system in transgenic mouse lines is a powerful tool used to study protein function. However, except in very specific Cre models, deletion of a protein throughout a tissue or cell population often leads to complex phenotypes resulting from multiple interacting mechanisms. Determining whether a phenotype results from disruption of a cell autonomous mechanism, which is intrinsic to the cell in question, or from a non-cell autonomous mechanism, which would result from impairment of that cell's environment, can be difficult to discern. To gain insight into protein function in an in vivo context, in utero electroporation (IUE) enables gene deletion in a small subset of cells within the developing cortex or some other selected brain region. IUE can be used to target specific brain areas, including the dorsal telencephalon, medial telencephalon, hippocampus, or ganglionic eminence. This facilitates observation of the consequences of cell autonomous gene deletion in the context of a healthy environment. The goal of this protocol is to show how IUE can be used to analyze a defect in radial migration in a floxed transgenic mouse line, with an emphasis on distinguishing between the cell autonomous and non-cell autonomous effects of protein deletion. By comparing the phenotype resulting from gene deletion within the entire cortex versus IUE-mediated gene deletion in a limited cell population, greater insight into protein function in brain development can be obtained than by using either technique in isolation.


Assuntos
Encéfalo/fisiologia , Movimento Celular/fisiologia , Eletroporação/métodos , Técnicas de Silenciamento de Genes/métodos , Neurônios/fisiologia , Proteína do Retinoblastoma/fisiologia , Proteína p107 Retinoblastoma-Like/fisiologia , Animais , Encéfalo/citologia , Embrião de Mamíferos , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Gravidez , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética
15.
PLoS One ; 9(9): e106601, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25210784

RESUMO

Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2.


Assuntos
Antioxidantes/metabolismo , Arildialquilfosfatase/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas Oncogênicas/biossíntese , Doença de Parkinson/genética , Animais , Apoptose/genética , Arildialquilfosfatase/genética , Sobrevivência Celular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Oncogênicas/genética , Estresse Oxidativo , Doença de Parkinson/patologia , Proteína Desglicase DJ-1
16.
J Neurosci ; 34(23): 8043-50, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24899725

RESUMO

DJ-1 (PARK7) is a gene linked to autosomal recessive Parkinson disease (PD). We showed previously that DJ-1 loss sensitizes neurons in models of PD and stroke. However, the biochemical mechanisms underlying this protective role are not completely clear. Here, we identify Von Hippel Lindau (VHL) protein as a critical DJ-1-interacting protein. We provide evidence that DJ-1 negatively regulates VHL ubiquitination activity of the α-subunit of hypoxia-inducible factor-1 (HIF-1α) by inhibiting HIF-VHL interaction. Consistent with this observation, DJ-1 deficiency leads to lowered HIF-1α levels in models of both hypoxia and oxidative stress, two stresses known to stabilize HIF-1α. We also demonstrate that HIF-1α accumulation rescues DJ-1-deficient neurons against 1-methyl-4-phenylpyridinium-induced toxicity. Interestingly, lymphoblast cells extracted from DJ-1-related PD patients show impaired HIF-1α stabilization when compared with normal individuals, indicating that the DJ-1-VHL link may also be relevant to a human context. Together, our findings delineate a model by which DJ-1 mediates neuronal survival by regulation of the VHL-HIF-1α pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neurônios/metabolismo , Proteínas Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Knockout , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Proteínas Oncogênicas/deficiência , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Doença de Parkinson/patologia , Peroxirredoxinas , Proteína Desglicase DJ-1 , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
17.
J Biol Chem ; 289(26): 18202-13, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24828495

RESUMO

Inappropriate activation of cell cycle proteins, in particular cyclin D/Cdk4, is implicated in neuronal death induced by various pathologic stresses, including DNA damage and ischemia. Key targets of Cdk4 in proliferating cells include members of the E2F transcription factors, which mediate the expression of cell cycle proteins as well as death-inducing genes. However, the presence of multiple E2F family members complicates our understanding of their role in death. We focused on whether E2F4, an E2F member believed to exhibit crucial control over the maintenance of a differentiated state of neurons, may be critical in ischemic neuronal death. We observed that, in contrast to E2F1 and E2F3, which sensitize to death, E2F4 plays a crucial protective role in neuronal death evoked by DNA damage, hypoxia, and global ischemic insult both in vitro and in vivo. E2F4 occupies promoter regions of proapoptotic factors, such as B-Myb, under basal conditions. Following stress exposure, E2F4-p130 complexes are lost rapidly along with the presence of E2F4 at E2F-containing B-Myb promoter sites. In contrast, the presence of E2F1 at B-Myb sites increases with stress. Furthermore, B-Myb and C-Myb expression increases with ischemic insult. Taken together, we propose a model by which E2F4 plays a protective role in neurons from ischemic insult by forming repressive complexes that prevent prodeath factors such as Myb from being expressed.


Assuntos
Fator de Transcrição E2F4/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/citologia , Proteína p130 Retinoblastoma-Like/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Fator de Transcrição E2F4/genética , Humanos , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/fisiopatologia , Masculino , Camundongos Knockout , Neurônios/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ratos Wistar , Proteína p130 Retinoblastoma-Like/genética , Transativadores/genética , Transativadores/metabolismo
18.
Nat Commun ; 5: 3550, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686499

RESUMO

Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells.


Assuntos
Acidose/metabolismo , Acidose/fisiopatologia , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Acidose/genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos , Mitose , Fosforilação Oxidativa
19.
Mol Cell Biol ; 33(14): 2797-808, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23689134

RESUMO

The involvement of nuclear factor kappa B (NF-κB) in several processes in the postnatal and adult brain, ranging from neuronal survival to synaptogenesis and plasticity, has been documented. In contrast, little is known about the functions of NF-κB during embryonic brain development. It is shown here that NF-κB is selectively activated in neocortical neural progenitor cells in the developing mouse telencephalon. Blockade of NF-κB activity leads to premature cortical neuronal differentiation and depletion of the progenitor cell pool. Conversely, NF-κB activation causes decreased cortical neurogenesis and expansion of the progenitor cell compartment. These effects are antagonized by the proneuronal transcription factor Hes6, which physically and functionally interacts with RelA-containing NF-κB complexes in cortical progenitor cells. In turn, NF-κB exerts an inhibitory effect on the ability of Hes6 to promote cortical neuronal differentiation. These results reveal previously uncharacterized functions and modes of regulation for NF-κB and Hes6 during cortical neurogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Neocórtex/embriologia , Neurogênese , Proteínas Repressoras/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células HEK293 , Humanos , Luciferases/biossíntese , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neocórtex/citologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais , Técnicas de Cultura de Tecidos , Ativação Transcricional
20.
Cell Cycle ; 12(9): 1416-23, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23574720

RESUMO

Neuronal survival is dependent upon the retinoblastoma family members, Rb1 (Rb) and Rb2 (p130). Rb is thought to regulate gene repression, in part, through direct recruitment of chromatin modifying enzymes to its conserved LXCXE binding domain. We sought to examine the mechanisms that Rb employs to mediate cell cycle gene repression in terminally differentiated cortical neurons. Here, we report that Rb loss converts chromatin at the promoters of E2f-target genes to an activated state. We established a mouse model system in which Rb-LXCXE interactions could be induciblely disabled. Surprisingly, this had no effect on survival or gene silencing in neuronal quiescence. Absence of the Rb LXCXE-binding domain in neurons is compatible with gene repression and long-term survival, unlike Rb deficiency. Finally, we are able to show that chromatin activation following Rb deletion occurs at the level of E2fs. Blocking E2f-mediated transcription downstream of Rb loss is sufficient to maintain chromatin in an inactive state. Taken together our results suggest a model whereby Rb-E2f interactions are sufficient to maintain gene repression irrespective of LXCXE-dependent chromatin remodeling.


Assuntos
Ciclo Celular , Montagem e Desmontagem da Cromatina , Fatores de Transcrição E2F/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteína do Retinoblastoma/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Cromatina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA