Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Free Radic Biol Med ; 204: 243-251, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37179033

RESUMO

The redox sensitive transcription factor NRF2 is a central regulator of the transcriptional response to reactive oxygen species (ROS). NRF2 is widely recognized for its ROS-responsive upregulation of antioxidant genes that are essential for mitigating the damaging effects of oxidative stress. However, multiple genome-wide approaches have suggested that NRF2's regulatory reach extends well beyond the canonical antioxidant genes, with the potential to regulate many noncanonical target genes. Recent work from our lab and others suggests HIF1A, which encodes the hypoxia-responsive transcription factor HIF1α, is one such noncanonical NRF2 target. These studies found that NRF2 activity is associated with high HIF1A expression in multiple cellular contexts, HIF1A expression is partially dependent on NRF2, and there is a putative NRF2 binding site (antioxidant response element, or ARE) approximately 30 kilobases upstream of HIF1A. These findings all support a model in which HIF1A is a direct target of NRF2, but did not confirm the functional importance of the upstream ARE in HIF1A expression. Here we use CRISPR/Cas9 genome editing to mutate this ARE in its genomic context and test the impact on HIF1A expression. We find that mutation of this ARE in a breast cancer cell line (MDA-MB-231) eliminates NRF2 binding and decreases HIF1A expression at the transcript and protein levels, and disrupts HIF1α target genes as well as phenotypes driven by these HIF1α targets. Taken together, these results indicate that this NRF2 targeted ARE plays an important role in the expression of HIF1A and activity of the HIF1α axis in MDA-MB-231 cells.


Assuntos
Elementos de Resposta Antioxidante , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
2.
Free Radic Biol Med ; 171: 319-331, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992677

RESUMO

Reactive oxygen species (ROS) are important signaling molecules in many physiological processes, yet excess ROS leads to cell damage and can lead to pathology. Accordingly, cells need to maintain tight regulation of ROS levels, and ROS-responsive transcriptional reprogramming is central to this process. Although it has long been recognized that oxidative stress leads to rapid, significant changes in gene expression, the impact of oxidative stress on the underlying chromatin accessibility landscape remained unclear. Here, we asked whether ROS-responsive transcriptional reprogramming is accompanied by reprogramming of the chromatin environment in MCF7 human breast cancer cells. Using a time-course exposure to multiple inducers of oxidative stress, we determined that the widespread ROS-responsive changes in gene expression induced by ROS occur with minimal changes to the chromatin environment. While we did observe changes in chromatin accessibility, these changes were: (1) far less numerous than gene expression changes after oxidative stress, and (2) occur within pre-existing regions of accessible chromatin. Transcription factor (TF) footprinting analysis of our ATAC-seq experiments identified 5 TFs or TF families with evidence for ROS-responsive changes in DNA binding: NRF2, AP-1, p53, NFY, and SP/KLF. Importantly, several of these (AP-1, NF-Y, and SP/KLF factors) have not been previously implicated as widespread regulators in the response to ROS. In summary, we have characterized genome-wide changes in gene expression and chromatin accessibility in response to ROS treatment of MCF7 cells, and we have found that regulation of the large-scale transcriptional response to excess ROS is primarily constrained by the cell's pre-existing chromatin landscape.


Assuntos
Cromatina , Fatores de Transcrição , Cromatina/genética , Regulação da Expressão Gênica , Humanos , Estresse Oxidativo/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
3.
Redox Biol ; 19: 401-411, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30241031

RESUMO

Reactive oxygen species (ROS), which are a byproduct of oxidative metabolism, serve as signaling molecules in a number of physiological settings. However, if their levels are not tightly maintained, excess ROS lead to potentially cytotoxic oxidative stress. Accordingly, several transcriptional regulatory networks have evolved to include components that are highly ROS-responsive. Depending on the context, these regulatory networks can leverage ROS to respond to nutrient conditions, metabolism, or other physiological signals, or to respond to oxidative stress. However, ROS signaling is complex, so regulatory interactions between various ROS-responsive transcription factors are still being mapped out. Here we show that the transcription factor NRF2, a key regulator of the adaptive response to oxidative stress, directly regulates expression of HIF1A, which encodes HIF1α, a key transcriptional regulator of the adaptive response to hypoxia. We used an integrative genomics approach to identify HIF1A as a ROS-responsive transcript and we found an NRF2-bound antioxidant response element (ARE) approximately 30 kilobases upstream of HIF1A. This ARE sequence is deeply conserved, and we verified that it is directly bound and activated by NRF2. In addition, we found that HIF1A is upregulated in breast and bladder tumors with high NRF2 activity. Taken together, our results demonstrate that NRF2 targets a functional ARE at the HIF1A locus, and reveal a direct regulatory connection between two important oxygen responsive transcription factors.


Assuntos
Elementos de Resposta Antioxidante/genética , Regulação da Expressão Gênica/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fator 2 Relacionado a NF-E2/genética , Antioxidantes/metabolismo , Neoplasias da Mama/patologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Células MCF-7 , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/patologia
4.
Redox Biol ; 19: 235-249, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30195190

RESUMO

NRF2 is a redox-responsive transcription factor that regulates expression of cytoprotective genes via its interaction with DNA sequences known as antioxidant response elements (AREs). NRF2 activity is induced by oxidative stress, but oxidative stress is not the only context in which NRF2 can be activated. Mutations that disrupt the interaction between NRF2 and KEAP1, an inhibitor of NRF2, lead to NRF2 hyperactivation and promote oncogenesis. The mechanisms underlying NRF2's oncogenic properties remain unclear, but likely involve aberrant expression of select NRF2 target genes. We tested this possibility using an integrative genomics approach to get a precise view of the direct NRF2 target genes dysregulated in tumors with NRF2 hyperactivating mutations. This approach revealed a core set of 32 direct NRF2 targets that are consistently upregulated in NRF2 hyperactivated tumors. This set of NRF2 "cancer target genes" includes canonical redox-related NRF2 targets, as well as target genes that have not been previously linked to NRF2 activation. Importantly, NRF2-driven upregulation of this gene set is largely independent of the organ system where the tumor developed. One key distinguishing feature of these NRF2 cancer target genes is that they are regulated by high affinity AREs that fall within genomic regions possessing a ubiquitously permissive chromatin signature. This implies that these NRF2 cancer target genes are responsive to oncogenic NRF2 in most tissues because they lack the regulatory constraints that restrict expression of most other NRF2 target genes. This NRF2 cancer target gene set also serves as a reliable proxy for NRF2 activity, and high NRF2 activity is associated with significant decreases in survival in multiple cancer types. Overall, the pervasive upregulation of these NRF2 cancer targets across multiple cancers, and their association with negative outcomes, suggests that these will be central to dissecting the functional implications of NRF2 hyperactivation in several cancer contexts.


Assuntos
Elementos de Resposta Antioxidante , Regulação Neoplásica da Expressão Gênica , Mutação , Fator 2 Relacionado a NF-E2/genética , Neoplasias/genética , Genômica , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Regulação para Cima
5.
PLoS Genet ; 14(8): e1007568, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30142157

RESUMO

We characterized the establishment of an Epidermal Growth Factor Receptor (EGFR) organizing center (EOC) during leg development in Drosophila melanogaster. Initial EGFR activation occurs in the center of leg discs by expression of the EGFR ligand Vn and the EGFR ligand-processing protease Rho, each through single enhancers, vnE and rhoE, that integrate inputs from Wg, Dpp, Dll and Sp1. Deletion of vnE and rhoE eliminates vn and rho expression in the center of the leg imaginal discs, respectively. Animals with deletions of both vnE and rhoE (but not individually) show distal but not medial leg truncations, suggesting that the distal source of EGFR ligands acts at short-range to only specify distal-most fates, and that multiple additional 'ring' enhancers are responsible for medial fates. Further, based on the cis-regulatory logic of vnE and rhoE we identified many additional leg enhancers, suggesting that this logic is broadly used by many genes during Drosophila limb development.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Receptores ErbB/fisiologia , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Peptídeos de Invertebrados/fisiologia , Alelos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Receptores ErbB/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Discos Imaginais/fisiologia , Neurregulinas/genética , Neurregulinas/fisiologia , Organizadores Embrionários , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia , Proteína Wnt1/genética , Proteína Wnt1/fisiologia
6.
Redox Biol ; 14: 686-693, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29179108

RESUMO

Late onset Alzheimer's disease (AD) is a multifactorial disorder, with AD risk influenced by both environmental and genetic factors. Recent genome-wide association studies (GWAS) have identified genetic loci associated with increased risk of developing AD. The MS4A (membrane-spanning 4-domains subfamily A) gene cluster is one of the most significant loci associated with AD risk, and MS4A6A expression is correlated with AD pathology. We identified a single nucleotide polymorphism, rs667897, at the MS4A locus that creates an antioxidant response element and links MS4A6A expression to the stress responsive Cap-n-Collar (CNC) transcription factors NRF1 (encoded by NFE2L1) and NRF2 (encoded by NFE2L2). The risk allele of rs667897 generates a strong CNC binding sequence that is activated by proteostatic stress in an NRF1-dependent manner, and is associated with increased expression of the gene MS4A6A. Together, these findings suggest that the cytoprotective CNC regulatory network aberrantly activates MS4A6A expression and increases AD risk in a subset of the population.


Assuntos
Doença de Alzheimer/genética , Elementos de Resposta Antioxidante , Proteínas de Membrana/genética , Regulação para Cima , Alelos , Células Hep G2 , Humanos , Fator 1 Nuclear Respiratório/metabolismo , Polimorfismo de Nucleotídeo Único , Ativação Transcricional
7.
Proc Biol Sci ; 283(1833)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27335414

RESUMO

Understanding ecological mechanisms regulating the evolution of biodiversity is of much interest to ecologists and evolutionary biologists. Adaptive radiation constitutes an important evolutionary process that generates biodiversity. Competition has long been thought to influence adaptive radiation, but the directionality of its effect and associated mechanisms remain ambiguous. Here, we report a rigorous experimental test of the role of competition on adaptive radiation using the rapidly evolving bacterium Pseudomonas fluorescens SBW25 interacting with multiple bacterial species that differed in their phylogenetic distance to the diversifying bacterium. We showed that the inhibitive effect of competitors on the adaptive radiation of P. fluorescens decreased as their phylogenetic distance increased. To explain this phylogenetic dependency of adaptive radiation, we linked the phylogenetic distance between P. fluorescens and its competitors to their niche and competitive fitness differences. Competitive fitness differences, which showed weak phylogenetic signal, reduced P. fluorescens abundance and thus diversification, whereas phylogenetically conserved niche differences promoted diversification. These results demonstrate the context dependency of competitive effects on adaptive radiation, and highlight the importance of past evolutionary history for ongoing evolutionary processes.


Assuntos
Evolução Biológica , Filogenia , Pseudomonas fluorescens/genética , Adaptação Biológica , Biodiversidade , Ecologia , Aptidão Genética
8.
Cell Rep ; 15(4): 830-842, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27149848

RESUMO

The NRF2/sMAF protein complex regulates the oxidative stress response by occupying cis-acting enhancers containing an antioxidant response element (ARE). Integrating genome-wide maps of NRF2/sMAF occupancy with disease-susceptibility loci, we discovered eight polymorphic AREs linked to 14 highly ranked disease-risk SNPs in individuals of European ancestry. Among these SNPs was rs242561, located within a regulatory region of the MAPT gene (encoding microtubule-associated protein Tau). It was consistently occupied by NRF2/sMAF in multiple experiments and its strong-binding allele associated with higher mRNA levels in cell lines and human brain tissue. Induction of MAPT transcription by NRF2 was confirmed using a human neuroblastoma cell line and a Nrf2-deficient mouse model. Most importantly, rs242561 displayed complete linkage disequilibrium with a highly protective allele identified in multiple GWASs of progressive supranuclear palsy, Parkinson's disease, and corticobasal degeneration. These observations suggest a potential role for NRF2/sMAF in tauopathies and a possible role for NRF2 pathway activators in disease prevention.

9.
Curr Opin Toxicol ; 1: 71-79, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28203648

RESUMO

Reactive oxygen species (ROS), which are both a natural byproduct of oxidative metabolism and an undesirable byproduct of many environmental stressors, can damage all classes of cellular macromolecules and promote diseases from cancer to neurodegeneration. The actions of ROS are mitigated by the transcription factor NRF2, which regulates expression of antioxidant genes via its interaction with cis-regulatory antioxidant response elements (AREs). However, despite the seemingly straightforward relationship between the opposing forces of ROS and NRF2, regulatory precision in the NRF2 network is essential. Genetic variants that alter NRF2 stability or alter ARE sequences have been linked to a range of diseases. NRF2 hyperactivating mutations are associated with tumorigenesis. On the subtler end of the spectrum, single nucleotide variants (SNVs) that alter individual ARE sequences have been linked to neurodegenerative disorders including progressive supranuclear palsy and Parkinson's disease, as well as other diseases. Although the human health implications of NRF2 dysregulation have been recognized for some time, a systems level view of this regulatory network is beginning to highlight key NRF2-targeted AREs consistently associated with disease.

10.
Cell Rep ; 8(2): 449-59, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25017066

RESUMO

Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie's ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie's mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas Nucleares/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/genética , Ligação Proteica , Transativadores/química , Transativadores/genética , Proteínas de Sinalização YAP
11.
Genes Dev ; 26(18): 2027-37, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22925885

RESUMO

Mitochondrial structure and function are highly dynamic, but the potential roles for cell signaling pathways in influencing these properties are not fully understood. Reduced mitochondrial function has been shown to cause cell cycle arrest, and a direct role of signaling pathways in controlling mitochondrial function during development and disease is an active area of investigation. Here, we show that the conserved Yorkie/YAP signaling pathway implicated in the control of organ size also functions in the regulation of mitochondria in Drosophila as well as human cells. In Drosophila, activation of Yorkie causes direct transcriptional up-regulation of genes that regulate mitochondrial fusion, such as opa1-like (opa1) and mitochondria assembly regulatory factor (Marf), and results in fused mitochondria with dramatic reduction in reactive oxygen species (ROS) levels. When mitochondrial fusion is genetically attenuated, the Yorkie-induced cell proliferation and tissue overgrowth are significantly suppressed. The function of Yorkie is conserved across evolution, as activation of YAP2 in human cell lines causes increased mitochondrial fusion. Thus, mitochondrial fusion is an essential and direct target of the Yorkie/YAP pathway in the regulation of organ size control during development and could play a similar role in the genesis of cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Proteínas Nucleares/genética , Fenótipo , Transativadores/genética , Proteínas de Sinalização YAP
12.
Genes Dev ; 23(19): 2307-19, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19762509

RESUMO

The accurate control of cell proliferation and survival is critical for animal development. The Hippo tumor suppressor pathway regulates both of these parameters by controlling the nuclear availability of the transcriptional coactivator Yorkie (Yki), which regulates downstream target genes together with Scalloped (Sd), a DNA-binding protein. Here we provide evidence that Yki can also regulate target genes in conjunction with Homothorax (Hth) and Teashirt (Tsh), two DNA-binding transcription factors expressed in the uncommitted progenitor cells of the Drosophila eye imaginal disc. Clonal analyses demonstrate that Hth and Tsh promote cell proliferation and protect eye progenitor cells from apoptosis. Genetic epistasis experiments suggest that Hth and Tsh execute these functions with Yki, in part by up-regulating the microRNA bantam. A physical interaction between Hth and Yki can be detected in cell culture, and we show that Hth and Yki are bound to a DNA sequence approximately 14 kb upstream of the bantam hairpin in eye imaginal disc cells, arguing that this regulation is direct. These data suggest that the Hippo pathway uses different DNA-binding transcription factors depending on the cellular context. In the eye disc, Hth and Tsh provide spatial information to this pathway, promoting cell proliferation and survival in the progenitor domain.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Olho/citologia , Olho/embriologia , Ligação Proteica , Proteínas de Sinalização YAP
13.
Eukaryot Cell ; 7(2): 358-67, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18156291

RESUMO

Nutrient repletion leads to substantial restructuring of the transcriptome in Saccharomyces cerevisiae. The expression levels of approximately one-third of all S. cerevisiae genes are altered at least twofold when a nutrient-depleted culture is transferred to fresh medium. Several nutrient-sensing pathways are known to play a role in this process, but the relative contribution that each pathway makes to the total response has not been determined. To better understand this, we used a chemical-genetic approach to block the protein kinase A (PKA), TOR (target of rapamycin), and glucose transport pathways, alone and in combination. Of the three pathways, we found that loss of PKA produced the largest effect on the transcriptional response; however, many genes required both PKA and TOR for proper nutrient regulation. Those genes that did not require PKA or TOR for nutrient regulation were dependent on glucose transport for either nutrient induction or repression. Therefore, loss of these three pathways is sufficient to prevent virtually the entire transcriptional response to fresh medium. In the absence of fresh medium, activation of the cyclic AMP/PKA pathway does not induce cellular growth; nevertheless, PKA activation induced a substantial fraction of the PKA-dependent genes. In contrast, the absence of fresh medium strongly limited gene repression by PKA. These results account for the signals needed to generate the transcriptional responses to glucose, including induction of growth genes required for protein synthesis and repression of stress genes, as well as the classical glucose repression and hexose transporter responses.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA