Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 155(1): 89-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33161477

RESUMO

Ischemia and reperfusion events, such as myocardial infarction (MI), are reported to induce remote organ damage severely compromising patient outcomes. Tissue survival and functional restoration relies on the activation of endogenous redox regulatory systems such as the oxidoreductases of the thioredoxin (Trx) family. Trxs and peroxiredoxins (Prxs) are essential for the redox regulation of protein thiol groups and for the reduction of hydrogen peroxide, respectively. Here, we determined whether experimental MI induces changes in Trxs and Prxs in the heart as well as in secondary organs. Levels and localization of Trx1, TrxR1, Trx2, Prx1, and Prx2 were analyzed in the femur, vertebrae, and kidneys of rats following MI or sham surgery. Trx1 levels were significantly increased in the heart (P = 0.0017) and femur (P < 0.0001) of MI animals. In the femur and lumbar vertebrae, Trx1 upregulation was detected in bone-lining cells, osteoblasts, megakaryocytes, and other hematopoietic cells. Serum levels of Trx1 increased significantly 2 days after MI compared to sham animals (P = 0.0085). Differential regulation of Trx1 in the bone was also detected by immunohistochemistry 1 month after MI. N-Acetyl-cysteine treatment over a period of 1 month induced a significant reduction of Trx1 levels in the bone of MI rats compared to sham and to MI vehicle. This study provides first evidence that MI induces remote organ upregulation of the redox protein Trx1 in the bone, as a response to ischemia-reperfusion injury in the heart.


Assuntos
Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Infarto do Miocárdio/metabolismo , Tiorredoxinas/metabolismo , Regulação para Cima , Animais , Medula Óssea/patologia , Osso e Ossos/patologia , Masculino , Infarto do Miocárdio/patologia , Ratos , Ratos Endogâmicos F344 , Tiorredoxinas/análise
2.
PLoS One ; 13(10): e0204803, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273386

RESUMO

Epidemiological studies have linked vitamin D deficiency to an increased incidence of myocardial infarction and support a role for vitamin D signalling in the pathophysiology of myocardial infarction. Vitamin D deficiency results in the development of secondary hyperparathyroidism, however, the role of secondary hyperparathyroidism in the pathophysiology of myocardial infarction is not known. Here, we aimed to explore further the secondary hyperparathyroidism independent role of vitamin D signalling in the pathophysiology of myocardial infarction by inducing experimental myocardial infarction in 3-month-old, male, wild-type mice and in mice lacking a functioning vitamin D receptor. In order to prevent secondary hyperparathyroidism in vitamin D receptor mutant mice, all mice were maintained on a rescue diet enriched with calcium, phosphorus, and lactose. Surprisingly, survival rate, cardiac function as measured by echocardiography and intra-cardiac catheterisation and cardiomyocyte size were indistinguishable between normocalcaemic vitamin D receptor mutant mice and wild-type controls, 2 and 8 weeks post-myocardial infarction. In addition, the myocardial infarction-induced inflammatory response was similar in vitamin D receptor mutants and wild-type mice, as evidenced by a comparable upregulation in cardiac interleukin-1-ß and tumor-necrosis-factor-α mRNA abundance and similar elevations in circulating interleukin-1-ß and tumor-necrosis-factor-α. Our data suggest that the lack of vitamin D signalling in normocalcaemic vitamin D receptor mutants has no major detrimental effect on cardiac function and outcome post-myocardial infarction. Our study may have important clinical implications because it suggests that the secondary hyperparathyroidism induced by vitamin D deficiency, rather than the lack of vitamin D signalling per se, may negatively impact cardiac function post-myocardial infarction.


Assuntos
Coração/fisiologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Deficiência de Vitamina D/metabolismo , Vitamina D/metabolismo , Animais , Cálcio da Dieta/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Fósforo na Dieta/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/fisiologia
3.
J Mol Med (Berl) ; 96(6): 559-573, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29736604

RESUMO

The RANK (receptor activator of nuclear factor κB)/RANKL (RANK ligand)/OPG (osteoprotegerin) axis is activated after myocardial infarction (MI), but its pathophysiological role is not well understood. Here, we investigated how global and cell compartment-selective inhibition of RANKL affects cardiac function and remodeling after MI in mice. Global RANKL inhibition was achieved by treatment of human RANKL knock-in (huRANKL-KI) mice with the monoclonal antibody AMG161. huRANKL-KI mice express a chimeric RANKL protein wherein part of the RANKL molecule is humanized. AMG161 inhibits human and chimeric but not murine RANKL. To dissect the pathophysiological role of RANKL derived from hematopoietic and mesenchymal cells, we selectively exchanged the hematopoietic cell compartment by lethal irradiation and across-genotype bone marrow transplantation between wild-type and huRANKL-KI mice, exploiting the specificity of AMG161. After permanent coronary artery ligation, mice were injected with AMG161 or an isotype control antibody over 4 weeks post-MI. MI increased RANKL expression mainly in cardiomyocytes and scar-infiltrating cells 4 weeks after MI. Only inhibition of RANKL derived from hematopoietic cellular sources, but not global or mesenchymal RANKL inhibition, improved post-infarct survival and cardiac function. Mechanistically, hematopoietic RANKL inhibition reduced expression of the pro-inflammatory cytokine IL-1ß in the cardiac cellular infiltrate. In conclusion, inhibition of RANKL derived from hematopoietic cellular sources is beneficial to maintain post-ischemic cardiac function by reduction of pro-inflammatory cytokine production. KEY MESSAGES: Experimental myocardial infarction (MI) augments cardiac RANKL expression in mice. RANKL expression is increased in cardiomyocytes and scar-infiltrating cells after MI. Global or mesenchymal cell RANKL inhibition has no influence on cardiac function after MI. Inhibition of RANKL derived from hematopoietic cells improves heart function post-MI. Hematopoietic RANKL inhibition reduces pro-inflammatory cytokines in scar-infiltrating cells.


Assuntos
Células-Tronco Hematopoéticas , Ligante RANK/antagonistas & inibidores , Animais , Citocinas , Masculino , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Osteoprotegerina , Receptor Ativador de Fator Nuclear kappa-B , Traumatismo por Reperfusão
4.
Sci Rep ; 7(1): 6460, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28744019

RESUMO

Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/citologia , Estrogênios/metabolismo , Ligante RANK/genética , Fosfatase Alcalina/genética , Animais , Densidade Óssea , Transplante de Medula Óssea/métodos , Remodelação Óssea/genética , Osso e Ossos/fisiologia , Receptor alfa de Estrogênio/genética , Estrogênios/genética , Feminino , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Humanos , Isoenzimas/genética , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos Knockout , Camundongos Transgênicos , Ligante RANK/metabolismo , Ratos Endogâmicos F344
5.
J Cell Mol Med ; 19(8): 1975-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25991381

RESUMO

Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4(+) AT2R(+) cells in the rat heart and spleen post-infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4(+) AT2R(+) T cells in circulating blood, post-infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4(+) cells. CD4(+) AT2R(+) T cells within blood CD4(+) T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4(+) AT2R(+) T cells which expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced splenic CD4(+) AT2R(+) T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4(+) AT2R(+) cells as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4(+) AT2R(+) cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Testes de Função Cardíaca , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/fisiopatologia , Receptor Tipo 2 de Angiotensina/metabolismo , Remodelação Ventricular , Animais , Cardiotônicos/metabolismo , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Imunomodulação , Interleucina-10/sangue , Infarto do Miocárdio/sangue , Infarto do Miocárdio/complicações , Isquemia Miocárdica/sangue , Isquemia Miocárdica/complicações , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/fisiopatologia , Ratos Wistar , Fator de Necrose Tumoral alfa/sangue
6.
Stem Cells ; 27(10): 2488-97, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19591228

RESUMO

The expression pattern of angiotensin AT2 receptors with predominance during fetal life and upregulation under pathological conditions during tissue injury/repair process suggests that AT2 receptors may exert an important action in injury/repair adaptive mechanisms. Less is known about AT2 receptors in acute ischemia-induced cardiac injury. We aimed here to elucidate the role of AT2 receptors after acute myocardial infarction. Double immunofluorescence staining showed that cardiac AT2 receptors were mainly detected in clusters of small c-kit+ cells accumulating in peri-infarct zone and c-kit+AT2+ cells increased in response to acute cardiac injury. Further, we isolated cardiac c-kit+AT2+ cell population by modified magnetic activated cell sorting and fluorescence activated cell sorting. These cardiac c-kit+AT2+ cells, represented approximately 0.19% of total cardiac cells in infarcted heart, were characterized by upregulated transcription factors implicated in cardiogenic differentiation (Gata-4, Notch-2, Nkx-2.5) and genes required for self-renewal (Tbx-3, c-Myc, Akt). When adult cardiomyocytes and cardiac c-kit+AT2+ cells isolated from infarcted rat hearts were cocultured, AT2 receptor stimulation in vitro inhibited apoptosis of these cocultured cardiomyocytes. Moreover, in vivo AT2 receptor stimulation led to an increased c-kit+AT2+ cell population in the infarcted myocardium and reduced apoptosis of cardiomyocytes in rats with acute myocardial infarction. These data suggest that cardiac c-kit+AT2+ cell population exists and increases after acute ischemic injury. AT2 receptor activation supports performance of cardiomyocytes, thus contributing to cardioprotection via cardiac c-kit+AT2+ cell population.


Assuntos
Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Angiotensinas/metabolismo , Angiotensinas/farmacologia , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Citometria de Fluxo , Imunofluorescência , Masculino , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/citologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA