Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 61: 120-129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31054328

RESUMO

Recent studies have implicated autophagy in several inflammatory diseases involving aberrant endothelial cell (EC) responses, such as acute lung injury (ALI). However, the mechanistic basis for a role of autophagy in EC inflammation and permeability remain poorly understood. In this study, we impaired autophagy by silencing the essential Beclin1 autophagy gene in human pulmonary artery EC. This resulted in reduced expression of proinflammatory genes in response to thrombin, a procoagulant and proinflammatory mediator whose concentration is elevated in many diseases including sepsis and ALI. These (Beclin1-depleted) cells also displayed a marked decrease in NF-κB activity secondary to impaired DNA binding of RelA/p65 in the nucleus, but exhibited normal IκBα degradation in the cytosol. Further analysis showed that Beclin1 knockdown was associated with impaired RelA/p65 translocation to the nucleus. Additionally, Beclin1 knockdown attenuated thrombin-induced phosphorylation of RelA/p65 at Ser536, a critical event necessary for the transcriptional activity of RelA/p65. Beclin1 silencing also protected against thrombin-induced EC barrier disruption by preventing the loss of VE-cadherin at adherens junctions. Moreover, Beclin1 knockdown reduced thrombin-induced phosphorylation/inactivation of actin depolymerizing protein Cofilin1 and thereby actin stress fiber formation required for EC permeability as well as RelA/p65 nuclear translocation. Together, these data identify Beclin1 as a novel mechanistic link between autophagy and EC dysfunction (inflammation and permeability).


Assuntos
Junções Aderentes/metabolismo , Autofagia/genética , Proteína Beclina-1/metabolismo , Células Endoteliais/metabolismo , Fator de Transcrição RelA/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Núcleo Celular/metabolismo , Células Cultivadas , Cofilina 1/metabolismo , DNA/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Artéria Pulmonar/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Trombina/farmacologia , Transfecção
2.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L517-24, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27371732

RESUMO

Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε(-/-) mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε(-/-) mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1ß, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε(+/+) mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Fosfoinositídeo Fosfolipase C/fisiologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Células Cultivadas , Endotélio Vascular/enzimologia , Endotélio Vascular/patologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais , Fibras de Estresse/metabolismo , Vasculite/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA