Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(9): 3576-81, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22323601

RESUMO

Patterning of the floral organs is exquisitely controlled and executed by four classes of homeotic regulators. Among these, the class B and class C floral homeotic regulators are of central importance as they specify the male and female reproductive organs. Inappropriate induction of the class B gene APETALA3 (AP3) and the class C gene AGAMOUS (AG) causes reduced reproductive fitness and is prevented by polycomb repression. At the onset of flower patterning, polycomb repression needs to be overcome to allow induction of AP3 and AG and formation of the reproductive organs. We show that the SWI2/SNF2 chromatin-remodeling ATPases SPLAYED (SYD) and BRAHMA (BRM) are redundantly required for flower patterning and for the activation of AP3 and AG. The SWI2/SNF2 ATPases are recruited to the regulatory regions of AP3 and AG during flower development and physically interact with two direct transcriptional activators of class B and class C gene expression, LEAFY (LFY) and SEPALLATA3 (SEP3). SYD and LFY association with the AP3 and AG regulatory loci peaks at the same time during flower patterning, and SYD binding to these loci is compromised in lfy and lfy sep3 mutants. This suggests a mechanism for SWI2/SNF2 ATPase recruitment to these loci at the right stage and in the correct cells. SYD and BRM act as trithorax proteins, and the requirement for SYD and BRM in flower patterning can be overcome by partial loss of polycomb activity in curly leaf (clf) mutants, implicating the SWI2/SNF2 chromatin remodelers in reversal of polycomb repression.


Assuntos
Proteína AGAMOUS de Arabidopsis/biossíntese , Adenosina Trifosfatases/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/fisiologia , Proteínas de Domínio MADS/biossíntese , Proteínas Repressoras/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Flores/ultraestrutura , Proteínas de Domínio MADS/genética , Proteínas do Grupo Polycomb , Mapeamento de Interação de Proteínas , Transcrição Gênica
2.
J Hered ; 99(6): 661-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18723774

RESUMO

In regions of their leaves, tdy1-R mutants hyperaccumulate starch. We propose 2 alternative hypotheses to account for the data, that Tdy1 functions in starch catabolism or that Tdy1 promotes sucrose export from leaves. To determine whether Tdy1 might function in starch breakdown, we exposed plants to extended darkness. We found that the tdy1-R mutant leaves retain large amounts of starch on prolonged dark treatment, consistent with a defect in starch catabolism. To further test this hypothesis, we identified a mutant allele of the leaf expressed small subunit of ADP-glucose pyrophosphorylase (agps-m1), an enzyme required for starch synthesis. We determined that the agps-m1 mutant allele is a molecular null and that plants homozygous for the mutation lack transitory leaf starch. Epistasis analysis of tdy1-R; agps-m1 double mutants demonstrates that Tdy1 function is independent of starch metabolism. These data suggest that Tdy1 may function in sucrose export from leaves.


Assuntos
Epistasia Genética , Glucose-1-Fosfato Adenililtransferase/genética , Mutação , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Amido/metabolismo , Zea mays/enzimologia , Escuridão , Glucose-1-Fosfato Adenililtransferase/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA