Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biomed Pharmacother ; 178: 117173, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059352

RESUMO

AIMS: Azacitidine, a drug that epigenetically modifies DNA, is widely used to treat haematological malignancies. However, at low doses, it demethylates DNA, and as a result, can alter gene expression. In our previous publication, we showed that low doses of azacitidine induce telomere length elongation in breast cancer cells. In this study, we aim to identify the mechanisms which lead to telomere length increases. METHODS: Breast cancer cell lines representing different molecular sub-types were exposed to 5-aza-2'-deoxycytidine (5-aza) in 2 and 3D cultures, followed by DNA, RNA, and protein extractions. Samples were then analysed for telomere length, DNA damage, telomerase, and ALT activity. RESULTS: We show that treatment of the cell lines with 5-aza for 72 h induced DNA damage at the telomeres and increased ALT activity 3-fold. We also identified a gene, POLD3, which may be involved in the ALT activity seen after treatment. CONCLUSION: Our results indicate that while 5-aza is a useful drug for treating haematological cancers, surviving cancer cells that have been exposed to lower doses of the drug may activate mechanisms such as ALT. This could lead to cancer cell survival and possible resistance to 5-aza clinically.


Assuntos
Neoplasias da Mama , Dano ao DNA , Decitabina , Telômero , Humanos , Decitabina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Telômero/efeitos dos fármacos , Telômero/metabolismo , Feminino , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Azacitidina/farmacologia , Telomerase/metabolismo , Telomerase/genética , Antimetabólitos Antineoplásicos/farmacologia , Homeostase do Telômero/efeitos dos fármacos
2.
Biosystems ; 238: 105197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556108

RESUMO

Our previous efforts to probe the complex, rich experiential lives of unicellular species have focused on the origins of consciousness (Reber, 2019) and the biomolecular processes that underlie sentience (Reber et al., 2023). Implied, but unexplored, was the assumption that these cognitive functions and associated unicellular organismal behaviors were linked with and often driven by affect, feelings, sensual experiences. In this essay we dig more deeply into these valenced (We're using the term valence here to cover the aspects of sensory experiences that have evaluative elements, are experienced as positive or negative ─ those where this affective, internal representation is an essential element in how the input is interpreted and responded to.) self-referencing features. In the first part, we examine the empirical evidence for various sensual experiences that have been identified. In the second part, we look at other features of prokaryote life that appear to also have affective, valenced elements but where the data to support the proposition aren't as strong. We engage in some informed speculation about these phenomena.


Assuntos
Cognição , Emoções , Estado de Consciência
3.
Artigo em Inglês | MEDLINE | ID: mdl-35649669

RESUMO

We examined frequencies of radiation-induced chromosomal aberrations, using classical cytological methods, and DNA damage in interphase and metaphase cells, using a combination of FISH, CO-FISH, TIF (telomere dysfunction induced assay) and simultaneous detection of DNA damage and telomeric sequences in metaphase chromosomes, in Chinese hamster cells defective in BRCA2 and control cells. Given that the Chinese hamster genome contains large blocks of interstitial telomeric sites, our results allow us to examine the role of BRCA2 in the potential fragility of these sites, but also whether BRCA2 affects DNA repair within terminal telomeric sequences. BRCA2 defective cells exhibited greater frequencies of DNA damage within interstitial telomeric sites, as well as within terminal telomeric sites, relative to control cells. Therefore, BRCA2 deficiency contributes to the telomere dysfunction phenotype in Chinese hamster cells.


Assuntos
Aberrações Cromossômicas , Telômero , Animais , Cricetinae , Cricetulus , Dano ao DNA , Hibridização in Situ Fluorescente/métodos , Telômero/genética
4.
Mutat Res Rev Mutat Res ; 784: 108299, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32430100

RESUMO

New molecular cytogenetic biomarkers may significantly contribute to biodosimetry, whose application is still globally diverse and not fully standardized. In 2011, a new term, chromothripsis, was introduced raising great interest among researchers and soon motivating further investigations of the phenomenon. Chromothripsis is described as a single event in which one or more chromosomes go through severe DNA damage very much resembling rogue cells (RC) described more than 50 years ago. In this review, we for the first time compare these two multi-aberrant cells types, RC versus chromothriptic cells, giving insight into the similarities of the mechanisms involved in their etiology. In order to make a better comparison, data on RC in 3366 subjects from studies on cancer patients, Chernobyl liquidators, child victims of the Chernobyl nuclear plant accident, residentially and occupationally exposed population have been summarized for the first time. Results of experimental and epidemiological analysis show that chromothriptic cells and RC may be caused by exposure to high LET ionizing radiation. Experience and knowledge collected on RC may be used in future for further investigations of chromothripsis, introducing a new class of cells which include both chromothriptic and RC, and better insight into the frequency of chromothriptic cell per subject, which is currently absent. Both cell types are relevant in investigations of cancer etiology, biomonitoring of accidentally exposed population to ionizing radiation and biomonitoring of astronauts due to their exposure to high LET ionizing radiation during interplanetary voyages.


Assuntos
Biomarcadores Tumorais/análise , Cromotripsia , Análise Citogenética , Dano ao DNA , Linfócitos/efeitos da radiação , Neoplasias/patologia , Animais , Biomarcadores Tumorais/genética , Humanos , Neoplasias/etiologia
5.
Genes Chromosomes Cancer ; 58(6): 341-356, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30474255

RESUMO

Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease-Hutchinson-Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long-term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT-immortalized cell lines.


Assuntos
Cariótipo Anormal , Instabilidade Genômica , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Progéria/genética , Telomerase/genética , Homeostase do Telômero , Linhagem Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Telomerase/metabolismo
6.
Int J Radiat Biol ; 95(1): 54-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29667481

RESUMO

PURPOSE: To investigate the effects of ionizing radiation on telomere length and telomerase activity in human lens epithelial cells. There are studies suggesting evidence of telomere length in association with opacity of the lens; however, these studies have been conducted on Canine Lens cells. Our study was designed to understand further the effects of different doses of ionizing radiation on telomere length and telomerase activity in cultured human lens epithelium cells from three Donors. MATERIALS AND METHODS: For this study, embryonic human lens epithelial (HLE) cells from three donors, obtained commercially were cultured. Telomere length and telomerase activity were measured after each passage until cells stopped growing in culture. This was repeated on irradiated (0.001 Gy, 0.01 Gy, 0.02 Gy, 0.1 Gy, 1 Gy and 2 Gy) cells. DNA damage response using the H2AX and telomere dysfunction foci assays were also examined at 30 mins, 24 hours, 48 hours and 72 hours postirradiation. RESULTS AND CONCLUSION: We have demonstrated genetic changes in telomere length and oxidative stress, which may be relevant to cataractogenesis. Our study shows that in control cells telomere length increases as passage increases. We have also demonstrated that telomere length increases at higher doses of 1.0 Gy and 2.0 Gy. However, telomerase activity decreases dose dependently and as passages increase. These results are not conclusive and further studies ex vivo measuring lens opacity and telomere length in the model would be beneficial in a bigger cohort, hence confirming a link between telomere length, cataractogenesis and genetic factors.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Cristalino/citologia , Telomerase/metabolismo , Telômero/genética , Linhagem Celular , Dano ao DNA , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Células Epiteliais/enzimologia , Feminino , Humanos , Raios X/efeitos adversos , Adulto Jovem
7.
Radiat Environ Biophys ; 57(2): 99-113, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327260

RESUMO

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.


Assuntos
Catarata/genética , Lesões Experimentais por Radiação/genética , Animais , Catarata/etiologia , Aberrações Cromossômicas/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Estimativa de Kaplan-Meier , Masculino , Camundongos , Lesões Experimentais por Radiação/etiologia , Proteção Radiológica , Medição de Risco , Telômero/efeitos da radiação , Fatores de Tempo
8.
Radiat Res ; 187(1): 98-106, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27959588

RESUMO

In directly irradiating cells, telomere metabolism is altered and similar effects have been observed in nontargeted cells. Exosomes and their cargo play dominant roles in communicating radiation-induced bystander effects with end points related to DNA damage. Here we report novel evidence that exosomes are also responsible for inducing telomere-related bystander effects. Breast epithelial cancer cells were exposed to either 2 Gy X rays, or exposed to irradiated cell conditioned media (ICCM), or exosomes purified from ICCM. Compared to control cells, telomerase activity decreased in the 2 Gy irradiated cells and both bystander samples after one population doubling. At the first population doubling, telomere length was shorter in the 2 Gy irradiated sample but not in the bystander samples. By 24 population doublings telomerase activity recovered to control levels in all samples; however, the 2 Gy irradiated sample continued to demonstrate short telomeres and both bystander samples acquired shorter telomeres. RNase treatment of exosomes prevented the bystander effects on telomerase and telomere length that were observed at 1 population doubling and 24 population doublings, respectively. Thermal denaturation by boiling eliminated the reduction of telomere length in bystander samples, suggesting that the protein fraction of exosomes also contributes to the telomeric effect. RNase treatment plus boiling abrogated all telomere-related effects in directly irradiated and bystander cell populations. These findings suggest that both proteins and RNAs of exosomes can induce alterations in telomeric metabolism, which can instigate genomic instability in epithelial cancer cells after X-ray irradiation.


Assuntos
Neoplasias da Mama/patologia , Exossomos/genética , Exossomos/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Glândulas Mamárias Humanas/patologia , Telômero/genética , Telômero/efeitos da radiação , Efeito Espectador/efeitos da radiação , Humanos , Células MCF-7 , Fatores de Tempo , Raios X/efeitos adversos
9.
Genes Chromosomes Cancer ; 55(11): 864-76, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27295426

RESUMO

Telomeres are specialized structures responsible for the chromosome end protection. Previous studies have revealed that defective BRCA1 may lead to elevated telomere fusions and accelerated telomere shortening. In addition, BRCA1 associates with promyelocytic leukemia (PML) bodies in alternative lengthening of telomeres (ALTs) positive cells. We report here elevated recombination rates at telomeres in cells from human BRCA1 mutation carriers and in mouse embryonic stem cells lacking both copies of functional Brca1. An increased recombination rate at telomeres is one of the signs of ALT. To investigate this possibility further we employed the C-circle assay that identifies ALT unequivocally. Our results revealed elevated levels of ALT activity in Brca1 defective mouse cells. Similar results were obtained when the same cells were assayed for the presence of another ALT marker, namely the frequency of PML bodies. These results suggest that BRCA1 may act as a repressor of ALT. © 2016 The Authors Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.


Assuntos
Proteína BRCA1/genética , Leucemia Promielocítica Aguda/genética , Homeostase do Telômero/genética , Telômero/genética , Animais , Linhagem Celular Tumoral , Humanos , Leucemia Promielocítica Aguda/patologia , Camundongos , Células-Tronco Embrionárias Murinas/patologia , Mutação , Recombinação Genética , Telomerase/genética
10.
Mol Cancer ; 13: 151, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929818

RESUMO

BACKGROUND: Epidemiological data show that the incidence of carcinomas in humans is highly dependent on age. However, the initial steps of the age-related molecular oncogenic processes by which the switch towards the neoplastic state occurs remain poorly understood, mostly due to the absence of powerful models. In a previous study, we showed that normal human epidermal keratinocytes (NHEKs) spontaneously and systematically escape from senescence to give rise to pre-neoplastic emerging cells. METHODS: Here, this model was used to analyze the gene expression profile associated with the early steps of age-related cell transformation. We compared the gene expression profiles of growing or senescent NHEKs to post-senescent emerging cells. Data analyses were performed by using the linear modeling features of the limma package, resulting in a two-sided t test or F-test based on moderated statistics. The p-values were adjusted for multiple testing by controlling the false discovery rate according to Benjamini Hochberg method.The common gene set resulting of differential gene expression profiles from these two comparisons revealed a post-senescence neoplastic emergence (PSNE) gene signature of 286 genes. RESULTS: About half of these genes were already reported as involved in cancer or premalignant skin diseases. However, bioinformatics analyses did not highlight inside this signature canonical cancer pathways but metabolic pathways, including in first line the metabolism of xenobiotics by cytochrome P450. In order to validate the relevance of this signature as a signature of pretransformation by senescence evasion, we invalidated two components of the metabolism of xenobiotics by cytochrome P450, AKR1C2 and AKR1C3. When performed at the beginning of the senescence plateau, this invalidation did not alter the senescent state itself but significantly decreased the frequency of PSNE. Conversely, overexpression of AKR1C2 but not AKR1C3 increased the frequency of PSNE. CONCLUSIONS: To our knowledge, this study is the first to identify reprogrammation of metabolic pathways in normal keratinocytes as a potential determinant of the switch from senescence to pre-transformation.


Assuntos
Envelhecimento/genética , Transformação Celular Neoplásica/metabolismo , Redes e Vias Metabólicas/genética , Linhagem Celular , Transformação Celular Neoplásica/genética , Senescência Celular/genética , Epiderme/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Transcriptoma
11.
Breast Cancer Res Treat ; 145(3): 581-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24807106

RESUMO

Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG associated with a specialized set of proteins, known collectively as Shelterin. These telosomal proteins protect the ends of chromosomes against end-to-end fusion and degradation. Short telomeres in breast cancer cells confer telomere dysfunction and this can be related to Shelterin proteins and their level of expression in breast cancer cell lines. This study investigates whether expression of Shelterin and Shelterin-associated proteins are altered, and influence the protection and maintenance of telomeres, in breast cancer cells. 5-aza-2'-deoxycytidine (5-aza-CdR) and trichostatin A (TSA) were used in an attempt to reactivate the expression of silenced genes. Our studies have shown that Shelterin and Shelterin-associated genes were down-regulated in breast cancer cell lines; this may be due to epigenetic modification of DNA as the promoter region of POT1 was found to be partially methylated. Shelterin genes expression was up-regulated upon treatment of 21NT breast cancer cells with 5-aza-CdR and TSA. The telomere length of treated 21NT cells was measured by q-PCR showed an increase in telomere length at different time points. Our studies have shown that down-regulation of Shelterin genes is partially due to methylation in some epithelial breast cancer cell lines. Removal of epigenetic silencing results in up-regulation of Shelterin and Shelterin-associated genes which can then lead to telomere length elongation and stability.


Assuntos
Azacitidina/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Ácidos Hidroxâmicos/farmacologia , Homeostase do Telômero/efeitos dos fármacos , Proteínas de Ligação a Telômeros/biossíntese , Antineoplásicos/farmacologia , Azacitidina/farmacologia , Linhagem Celular Tumoral , DNA/genética , Metilação de DNA/genética , Decitabina , Epigênese Genética , Feminino , Histonas/metabolismo , Humanos , Células MCF-7 , Metiltransferases/antagonistas & inibidores , Regiões Promotoras Genéticas/genética , Complexo Shelterina , Telômero/efeitos dos fármacos , Telômero/fisiologia , Proteínas de Ligação a Telômeros/genética
12.
Genome Integr ; 4(1): 2, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23521760

RESUMO

BACKGROUND: Telomeres, the physical ends of chromosomes, play an important role in preserving genomic integrity. This protection is supported by telomere binding proteins collectively known as the shelterin complex. The shelterin complex protects chromosome ends by suppressing DNA damage response and acting as a regulator of telomere length maintenance by telomerase, an enzyme that elongates telomeres. Telomere dysfunction manifests in different forms including chromosomal end-to-end fusion, telomere shortening and p53-dependent apoptosis and/or senescence. An important shelterin-associated protein with critical role in telomere protection in human and mouse cells is the catalytic subunit of DNA-protein kinase (DNA-PKcs). DNA-PKcs deficiency in mouse cells results in elevated levels of spontaneous telomeric fusion, a marker of telomere dysfunction, but does not cause telomere length shortening. Similarly, inhibition of DNA-PKcs with chemical inhibitor, IC86621, prevents chromosomal end protection through mechanism reminiscent of dominant-negative reduction in DNA-PKcs activity. RESULTS: We demonstrate here that the IC86621 mediated inhibition of DNA-PKcs in two mouse lymphoma cell lines results not only in elevated frequencies of chromosome end-to-end fusions, but also accelerated telomere shortening in the presence of telomerase. Furthermore, we observed increased levels of spontaneous telomeric fusions in Artemis defective human primary fibroblasts in which DNA-PKcs was inhibited, but no significant changes in telomere length. CONCLUSION: These results confirm that DNA-PKcs plays an active role in chromosome end protection in mouse and human cells. Furthermore, it appears that DNA-PKcs is also involved in telomere length regulation, independently of telomerase activity, in mouse lymphoma cells but not in human cells.

13.
DNA Repair (Amst) ; 12(5): 356-66, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23518413

RESUMO

Smc5-6 is a highly conserved protein complex related to cohesin and condensin involved in the structural maintenance of chromosomes. In yeasts the Smc5-6 complex is essential for proliferation and is involved in DNA repair and homologous recombination. siRNA depletion of genes involved in the Smc5-6 complex in cultured mammalian cells results in sensitivity to some DNA damaging agents. In order to gain further insight into its role in mammals we have generated mice mutated in the Smc6 gene. A complete knockout resulted in early embryonic lethality, demonstrating that this gene is essential in mammals. However, mutation of the highly conserved serine-994 to alanine in the ATP hydrolysis motif in the SMC6 C-terminal domain, resulted in mice with a surprisingly mild phenotype. With the neo gene selection marker in the intron following the mutation, resulting in reduced expression of the SMC6 gene, the mice were reduced in size, but fertile and had normal lifespans. When the neo gene was removed, the mice had normal size, but detailed phenotypic analysis revealed minor abnormalities in glucose tolerance, haematopoiesis, nociception and global gene expression patterns. Embryonic fibroblasts derived from the ser994 mutant mice were not sensitive to killing by a range of DNA damaging agents, but they were sensitive to the induction of sister chromatid exchanges induced by ultraviolet light or mitomycin C. They also accumulated more oxidative damage than wild-type cells.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Mutação de Sentido Incorreto , Fenótipo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Animais , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Fertilidade/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Genes Essenciais , Intolerância à Glucose/genética , Hematopoese/genética , Hidrólise , Íntrons , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitomicina/farmacologia , Nociceptividade , Troca de Cromátide Irmã/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos da radiação , Raios Ultravioleta
14.
Genome Integr ; 2: 9, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152194

RESUMO

BACKGROUND: Recent studies suggest that BRCA2 affects telomere maintenance. Interestingly, anti cancer treatments that involve BRCA2 and telomerase individually are currently being explored. In the light of the above recent studies their combinatorial targeting may be justified in the development of future treatments. In order to investigate effects of BRCA2 that can be explored for this combinatorial targeting we focused on the analysis of recombination rates at telomeres by monitoring T-SCEs (Telomere Sister Chromatid Exchanges). RESULTS: We observed a significant increase in T-SCE frequencies in four BRCA2 defective human cell lines thus suggesting that BRCA2 suppresses recombination at telomeres. To test this hypothesis further we analyzed T-SCE frequencies in a set of Chinese hamster cell lines with or without functional BRCA2. Our results indicate that introduction of functional BRCA2 normalizes frequencies of T-SCEs thus supporting the notion that BRCA2 suppresses recombination at telomeres. Given that ALT (Alternative Lengthening of Telomeres) positive cells maintain telomeres by recombination we investigated the effect of BRCA2 depletion in these cells. Our results show that this depletion causes a dramatic reduction in T-SCE frequencies in ALT positive cells, but not in non-ALT cells. CONCLUSION: BRCA2 suppresses recombination at telomeres in cells that maintain them by conventional mechanisms. Furthermore, BRCA2 depletion in ALT positive cells reduces high levels of T-SCEs normally found in these cells. Our results could be potentially important for refining telomerase-based anti-cancer therapies.

15.
J Pathol ; 223(5): 604-17, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21341274

RESUMO

Fibrosis can occur in many organs, where it is a debilitating and preneoplastic condition. The senescence of activated fibroblasts has been proposed to ameliorate fibrosis via the innate immune system but its role in humans has not been investigated. The availability of oral submucous fibrosis (OSMF) biopsies at different stages of disease progression allowed us to test the hypothesis that senescent fibroblasts accumulate with the progression of human fibrosis in vivo, and also to examine the mechanism of senescence. We tested the hypothesis that senescent cells may ameliorate fibrosis by increasing the secretion of matrix metalloproteinases (MMPs). We have used a combination of in situ immunodetection techniques, drug treatments, fluorescence-activated cell sorting and enzyme-linked absorbance assays on tissue samples and fibroblast cultures. We report a novel panning technique, based on fibronectin adhesion rates, to enrich and deplete senescent cells from fibroblast populations. Senescent fibroblasts, as determined by the presence of senescence-associated heterochromatic foci, accumulated with OSMF progression (R(2) = 0.98) and possessed a reduced replicative lifespan in vitro. Unlike wounds, however, OSMF fibroblasts were quiescent in vivo and consistent with this observation, possessed functional telomeres of normal length. Senescence was associated in vivo and in vitro with oxidative damage, DNA damage foci and p16(INK4A) accumulation and required the production of reactive oxygen species (ROS), perhaps from damaged mitochondria, but not the continuous presence of the disease stimulus (areca nut and tobacco), the tissue environment or other cell types. Depletion of OSMF fibroblasts of senescent cells showed that these cells accounted for 25-83 times more MMP-1 and -2 than their pre-senescent counterparts. The results show that the accumulation of senescent fibroblasts in human fibrosis occurs by a telomere-independent mechanism involving ROS and may locally ameliorate the condition by the increased expression of MMPs prior to clearance by the immune system.


Assuntos
Metaloproteinases da Matriz/fisiologia , Células-Tronco Mesenquimais/patologia , Fibrose Oral Submucosa/patologia , Adolescente , Adulto , Idoso , Proliferação de Células , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , Progressão da Doença , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Telômero/fisiologia , Adulto Jovem
16.
Genome Integr ; 1(1): 16, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21176161

RESUMO

BACKGROUND: The Nucleotide Excision Repair (NER) pathway specialises in UV-induced DNA damage repair. Inherited defects in the NER can predispose individuals to Xeroderma Pigmentosum (XP). UV-induced DNA damage cannot account for the manifestation of XP in organ systems not directly exposed to sunlight. While the NER has recently been implicated in the repair of oxidative DNA lesions, it is not well characterised. Therefore we sought to investigate the role of NER factors Xeroderma Pigmentosum A (XPA), XPB and XPD in oxidative DNA damage-repair by subjecting lymphoblastoid cells from patients suffering from XP-A, XP-D and XP-B with Cockayne Syndrome to hydrogen peroxide (H2O2). RESULTS: Loss of functional XPB or XPD but not XPA led to enhanced sensitivity towards H2O2-induced cell death. XP-deficient lymphoblastoid cells exhibited increased susceptibility to H2O2-induced DNA damage with XPD showing the highest susceptibility and lowest repair capacity. Furthermore, XPB- and XPD-deficient lymphoblastoid cells displayed enhanced DNA damage at the telomeres. XPA- and XPB-deficient lymphoblastoid cells also showed differential regulation of XPD following H2O2 treatment. CONCLUSIONS: Taken together, our data implicate a role for the NER in H2O2-induced oxidative stress management and further corroborates that oxidative stress is a significant contributing factor in XP symptoms. Resistance of XPA-deficient lymphoblastoid cells to H2O2-induced cell death while harbouring DNA damage poses a potential cancer risk factor for XPA patients. Our data implicate XPB and XPD in the protection against oxidative stress-induced DNA damage and telomere shortening, and thus premature senescence.

17.
Tohoku J Exp Med ; 221(1): 69-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20453460

RESUMO

Among patients with bone marrow failure (BMF) syndrome, some are happened to have underlying Fanconi anemia (FA), a genetically heterogeneous disease, which is characterized by progressive pancytopenia and cancer susceptibility. Due to heterogeneous nature of the disease, a single genetic test, as in vitro response to DNA cross-linking agents, usually is not enough to make correct diagnosis. The aim of this study was to evaluate whether measuring repair kinetics of radiation-induced DNA double-strand breaks (DSBs) can distinguish Fanconi anemia from other BMF patients. An early step in repair of DSBs is phosphorylation of the histone H2AX, generating gamma-H2AX histone, which extends over mega base-pair regions of DNA from the break site and is visualised as foci (gamma-H2AX foci) with specific antibodies. The primary fibroblasts, established from FA patients, were exposed to gamma-rays, a dose of 2 Gy ((60)Co), incubated for up to 24 hours under repair-permissive conditions, and assayed for the level of gamma-H2AX foci and apoptosis at different recovery times after the treatment. Cell lines originating from FA patients displayed a significant delay in the repair of radiation-induced DNA DSBs relative to non-FA bone marrow failure (non-FA BMF) and control cell lines. The delay is especially evident at recovery time of 24 hours, and is seen as about 8-fold increase of residual gamma-H2AX foci compared to self-state before irradiation. The delay in repair kinetics of FA cells represents the unique feature of FA cellular phenotype, which should be exploited to distinguish FA cellular phenotype.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Anemia de Fanconi/diagnóstico , Síndromes Mielodisplásicas/diagnóstico , Adolescente , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Células Cultivadas , Criança , Pré-Escolar , Reagentes de Ligações Cruzadas/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Diagnóstico Diferencial , Compostos de Epóxi/farmacologia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Técnica Indireta de Fluorescência para Anticorpo , Histonas/metabolismo , Humanos , Cinética , Masculino , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Valor Preditivo dos Testes
18.
Cancer Res ; 69(20): 7917-25, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19826058

RESUMO

Studies on human fibroblasts have led to viewing senescence as a barrier against tumorigenesis. Using keratinocytes, we show here that partially transformed and tumorigenic cells systematically and spontaneously emerge from senescent cultures. We show that these emerging cells are generated from senescent cells, which are still competent for replication, by an unusual budding-mitosis mechanism. We further present data implicating reactive oxygen species that accumulate during senescence as a potential mutagenic motor of this post-senescence emergence. We conclude that senescence and its associated oxidative stress could be a tumor-promoting state for epithelial cells, potentially explaining why the incidence of carcinogenesis dramatically increases with advanced age.


Assuntos
Transformação Celular Neoplásica , Senescência Celular , Dano ao DNA , Neoplasias/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Adenoviridae , Adolescente , Adulto , Elementos Alu , Western Blotting , Proliferação de Células , Células Cultivadas , Ensaio Cometa , Sondas de DNA , Epiderme/metabolismo , Epiderme/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Imunofluorescência , Humanos , Hibridização In Situ , Cariotipagem , Queratinócitos/metabolismo , Queratinócitos/patologia , Pessoa de Meia-Idade , Neoplasias/metabolismo , Superóxido Dismutase/metabolismo , Adulto Jovem
19.
Nature ; 447(7145): 686-90, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17554302

RESUMO

Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of ageing. Here we address this question by taking advantage of the highly specific role of DNA ligase IV in the repair of DNA double-strand breaks by non-homologous end-joining, and by the discovery of a unique mouse strain with a hypomorphic Lig4(Y288C) mutation. The Lig4(Y288C) mouse, identified by means of a mutagenesis screening programme, is a mouse model for human LIG4 syndrome, showing immunodeficiency and growth retardation. Diminished DNA double-strand break repair in the Lig4(Y288C) strain causes a progressive loss of haematopoietic stem cells and bone marrow cellularity during ageing, and severely impairs stem cell function in tissue culture and transplantation. The sensitivity of haematopoietic stem cells to non-homologous end-joining deficiency is therefore a key determinant of their ability to maintain themselves against physiological stress over time and to withstand culture and transplantation.


Assuntos
Envelhecimento/fisiologia , Reparo do DNA , Células-Tronco Hematopoéticas/citologia , Animais , Proliferação de Células , Senescência Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Ligase Dependente de ATP , DNA Ligases/deficiência , DNA Ligases/genética , DNA Ligases/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto/efeitos dos fármacos , Mutação de Sentido Incorreto/genética , Síndrome
20.
DNA Repair (Amst) ; 5(11): 1299-306, 2006 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-16798109

RESUMO

Telomeres are specialized structures at chromosome ends which play the key role in chromosomal end protection. There is increasing evidence that many DNA damage response proteins are involved in telomere maintenance. For example, cells defective in DNA double strand break repair proteins including Ku, DNA-PKcs, RAD51D and the MRN (MRE11/RAD51/NBS1) complex show loss of telomere capping function. Similarly, mouse and human cells defective in ataxia telangiectasia mutated (ATM) have defective telomeres. A total of 14 mammalian DNA damage response proteins have, so far, been implicated in telomere maintenance. Recent studies indicate that three more proteins, namely BRCA1, hRad9 and PARP1 are involved in telomere maintenance. The involvement of a wide range of DNA damage response proteins at telomeres raises an important question: do telomere maintenance mechanisms constitute an integral part of DNA damage response machinery? A model termed the "integrative" model is proposed here to argue in favour of telomere maintenance being an integral part of DNA damage response. The "integrative" model is supported by the observation that a telomeric protein, TRF2, is not confined to its local telomeric environment but it migrates to the sites of DNA breakage following exposure of cells to ionizing radiation. Furthermore, even if telomeres are maintained in a non-canonical way, as in the case of Drosophila, DNA damage response proteins are still involved in telomere maintenance suggesting integration of telomere maintenance mechanisms into the DNA damage response network.


Assuntos
Dano ao DNA , Reparo do DNA/fisiologia , Modelos Genéticos , Telômero/metabolismo , Animais , Proteína BRCA1/fisiologia , Proteínas de Ciclo Celular/fisiologia , Humanos , Camundongos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/fisiologia , Telômero/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA