Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 3039-3065, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306405

RESUMO

Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules. Herein, we describe the use of DNA-encoded chemical library synthesis and screening to directly generate complex, yet conformationally privileged macrocyclic hits that serve as Mcl-1 inhibitors. By applying a conceptual combination of conformational analysis and structure-based design in combination with a robust synthetic platform allowing rapid analoging, we optimized in vitro potency of a lead series into the low nanomolar regime. Additionally, we demonstrate fine-tuning of the physicochemical properties of the macrocyclic compounds, resulting in the identification of lead candidates 57/59 with a balanced profile, which are suitable for future development toward therapeutic use.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Apoptose , Conformação Molecular , DNA , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Mol Pharm ; 16(11): 4572-4581, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31596097

RESUMO

Cell-targeting peptides (CTPs) are increasingly used in the field of cancer research due to their high affinity and specificity to cell or tissue targets. In the search for novel metal-based drug candidates, our research group is particularly focused on bioconjugates by utilizing peptides to increase the selectivity of cytotoxic organometallic compounds. Motivated by the relatively high cytotoxic activity of gold complexes, such as Auranofin (approved to treat rheumatoid arthritis), for the treatment of various diseases, we anticipated that gold peptide bioconjugates would present interesting candidates for novel breast cancer therapies. For this, we investigate the use of the natural compound lipoic acid (Lpa) as a bioconjugation handle to link Au complexes in the oxidation state +III to peptides using the dithiol moiety. Using this strategy, we have synthesized Au(III) complex bioconjugates linked to the linear LTVSPWY peptide and two cyclic DfKRG and KTTHWGFTLG tumor-targeting peptides. Solid-phase peptide synthesis (SPPS) was used to prepare the peptides, with lipoic acid introduced N-terminally as a conjugation handle. After peptide cleavage, the metal complex was introduced in solution by first reducing the internal disulfide bond, followed by reaction with Au(ppy)Cl2 (1, ppy: 2-phenyl-pyridine), to yield the Au(III)-Lpa-peptide bioconjugates. The new bioconjugates were successfully synthesized, purified by semi-preparative HPLC, and characterized by ESI-MS. Au(III)-peptide bioconjugates were tested as cytotoxic agents against two different human breast cancer cell lines (MCF-7 and MDA-MB-231) and normal human fibroblasts cells (GM5657T) and compared to cisplatin, the parent Au(III) dichloride complex, and metal-free peptides. These in vitro data show that the Au(III)-peptide bioconjugate 5, possessing the cyclic integrin-targeting RGD-derived peptide sequence in the structure, exhibits improved activity compared to the parent gold(III) compound Au(ppy)Cl2 (1) as well as to cisplatin or the metal-free peptide. Moreover, the excellent targeting properties of 5 are supported by the fact that a Au(III)-peptide conjugate with the exact same peptide sequence, but a linear rather than the cyclic form of 5 exhibits 10 times lower cytotoxic activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cisplatino/química , Cisplatino/farmacologia , Ouro/química , Compostos Organometálicos/química , Peptídeos Cíclicos/química , Ácido Tióctico/química , Antineoplásicos , Auranofina/química , Auranofina/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Células MCF-7 , Oligopeptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA