Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 729851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721393

RESUMO

Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Lisossomos/efeitos dos fármacos , Proteína C1 de Niemann-Pick/antagonistas & inibidores , Proteínas do Envelope Viral/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Anticorpos Biespecíficos/genética , Anticorpos Amplamente Neutralizantes/genética , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Epitopos , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , Ligantes , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/virologia , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/imunologia , Proteína C1 de Niemann-Pick/metabolismo , Engenharia de Proteínas , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Células THP-1 , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
2.
Adv Virus Res ; 104: 185-224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31439149

RESUMO

Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (ß1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.


Assuntos
Interações Hospedeiro-Patógeno , Orthohantavírus/fisiologia , Internalização do Vírus , Pesquisa Biomédica/tendências , Ligação Proteica , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral
3.
Viruses ; 11(7)2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337019

RESUMO

Andes virus (ANDV) and Sin Nombre virus (SNV) are the main causative agents responsible for hantavirus cardiopulmonary syndrome (HCPS) in the Americas. HCPS is a severe respiratory disease with a high fatality rate for which there are no approved therapeutics or vaccines available. Some vaccine approaches for HCPS have been tested in preclinical models, but none have been tested in infectious models in regard to their ability to protect against multiple species of HCPS-causing viruses. Here, we utilize recombinant vesicular stomatitis virus-based (VSV) vaccines for Andes virus (ANDV) and Sin Nombre virus (SNV) and assess their ability to provide cross-protection in infectious challenge models. We show that, while both rVSVΔG/ANDVGPC and rVSVΔG/SNVGPC display attenuated growth as compared to wild type VSV, each vaccine is able to induce a cross-reactive antibody response. Both vaccines protected against both homologous and heterologous challenge with ANDV and SNV and prevented HCPS in a lethal ANDV challenge model. This study provides evidence that the development of a single vaccine against HCPS-causing hantaviruses could provide protection against multiple agents.


Assuntos
Anticorpos Antivirais/sangue , Proteção Cruzada , Síndrome Pulmonar por Hantavirus/prevenção & controle , Orthohantavírus/imunologia , Vírus Sin Nombre/imunologia , Vesiculovirus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Cricetinae , Feminino , Mesocricetus , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vesiculovirus/genética , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/imunologia , Vacinas Virais/genética
4.
mBio ; 10(1)2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622188

RESUMO

Rodent-to-human transmission of hantaviruses is associated with severe disease. Currently, no FDA-approved, specific antivirals or vaccines are available, and the requirement for high biocontainment (biosafety level 3 [BSL-3]) laboratories limits hantavirus research. To study hantavirus entry in a BSL-2 laboratory, we set out to generate replication-competent, recombinant vesicular stomatitis viruses (rVSVs) bearing the Gn and Gc (Gn/Gc) entry glycoproteins. As previously reported, rVSVs bearing New World hantavirus Gn/Gc were readily rescued from cDNAs, but their counterparts bearing Gn/Gc from the Old World hantaviruses, Hantaan virus (HTNV) or Dobrava-Belgrade virus (DOBV), were refractory to rescue. However, serial passage of the rescued rVSV-HTNV Gn/Gc virus markedly increased its infectivity and capacity for cell-to-cell spread. This gain in viral fitness was associated with the acquisition of two point mutations: I532K in the cytoplasmic tail of Gn and S1094L in the membrane-proximal stem of Gc. Follow-up experiments with rVSVs and single-cycle VSV pseudotypes confirmed these results. Mechanistic studies revealed that both mutations were determinative and contributed to viral infectivity in a synergistic manner. Our findings indicate that the primary mode of action of these mutations is to relocalize HTNV Gn/Gc from the Golgi complex to the cell surface, thereby affording significantly enhanced Gn/Gc incorporation into budding VSV particles. Finally, I532K/S1094L mutations in DOBV Gn/Gc permitted the rescue of rVSV-DOBV Gn/Gc, demonstrating that incorporation of cognate mutations into other hantaviral Gn/Gc proteins could afford the generation of rVSVs that are otherwise challenging to rescue. The robust replication-competent rVSVs, bearing HTNV and DOBV Gn/Gc, reported herein may also have utility as vaccines.IMPORTANCE Human hantavirus infections cause hantavirus pulmonary syndrome in the Americas and hemorrhagic fever with renal syndrome (HFRS) in Eurasia. No FDA-approved vaccines and therapeutics exist for these deadly viruses, and their development is limited by the requirement for high biocontainment. In this study, we identified and characterized key amino acid changes in the surface glycoproteins of HFRS-causing Hantaan virus that enhance their incorporation into recombinant vesicular stomatitis virus (rVSV) particles. The replication-competent rVSVs encoding Hantaan virus and Dobrava-Belgrade virus glycoproteins described in this work provide a powerful and facile system to study hantavirus entry under lower biocontainment and may have utility as hantavirus vaccines.


Assuntos
Vetores Genéticos , Proteínas Mutantes/genética , Orthohantavírus/genética , Mutação Puntual , Proteínas Recombinantes/genética , Vesiculovirus/genética , Proteínas do Envelope Viral/genética , Linhagem Celular , Glicoproteínas/genética , Humanos , Genética Reversa , Inoculações Seriadas , Vesiculovirus/fisiologia , Liberação de Vírus , Replicação Viral
5.
Mol Ther Methods Clin Dev ; 3: 16005, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942209

RESUMO

Using lentiviral vector products in clinical applications requires an accurate method for measuring transduction titer. For vectors lacking a marker gene, quantitative polymerase chain reaction is used to evaluate the number of vector DNA copies in transduced target cells, from which a transduction titer is calculated. Immune Design previously described an integration-deficient lentiviral vector pseudotyped with a modified Sindbis virus envelope for use in cancer immunotherapy (VP02, of the ZVex platform). Standard protocols for titering integration-competent lentiviral vectors employ commercial spin columns to purify vector DNA from transduced cells, but such columns are not optimized for isolation of extrachromosomal (nonintegrated) DNA. Here, we describe a 96-well transduction titer assay in which DNA extraction is performed in situ in the transduction plate, yielding quantitative recovery of extrachromosomal DNA. Vector titers measured by this method were higher than when commercial spin columns were used for DNA isolation. Evaluation of the method's specificity, linear range, and precision demonstrate that it is suitable for use as a lot release assay to support clinical trials with VP02. Finally, the method is compatible with titering both integrating and nonintegrating lentiviral vectors, suggesting that it may be used to evaluate the transduction titer for any lentiviral vector.

6.
J Immunother ; 38(2): 41-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658613

RESUMO

Dendritic cells (DCs) are essential antigen-presenting cells for the initiation of cytotoxic T-cell responses and therefore attractive targets for cancer immunotherapy. We have developed an integration-deficient lentiviral vector termed ID-VP02 that is designed to deliver antigen-encoding nucleic acids selectively to human DCs in vivo. ID-VP02 utilizes a genetically and glycobiologically engineered Sindbis virus glycoprotein to target human DCs through the C-type lectin DC-SIGN (CD209) and also binds to the homologue murine receptor SIGNR1. Specificity of ID-VP02 for antigen-presenting cells in the mouse was confirmed through biodistribution studies showing that following subcutaneous administration, transgene expression was only detectable at the injection site and the draining lymph node. A single immunization with ID-VP02 induced a high level of antigen-specific, polyfunctional effector and memory CD8 T-cell responses that fully protected against vaccinia virus challenge. Upon homologous readministration, ID-VP02 induced a level of high-quality secondary effector and memory cells characterized by stable polyfunctionality and expression of IL-7Rα. Importantly, a single injection of ID-VP02 also induced robust cytotoxic responses against an endogenous rejection antigen of CT26 colon carcinoma cells and conferred both prophylactic and therapeutic antitumor efficacy. ID-VP02 is the first lentiviral vector which combines integration deficiency with DC targeting and is currently being investigated in a phase I trial in cancer patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer , Carcinoma/terapia , Neoplasias do Colo/terapia , Células Dendríticas/imunologia , Vetores Genéticos , Imunoterapia Adotiva , Lentivirus/genética , Sindbis virus/genética , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Carcinoma/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Neoplasias do Colo/imunologia , Citotoxicidade Imunológica , Células Dendríticas/transplante , Células Dendríticas/virologia , Engenharia Genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Memória Imunológica , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina-7/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Integração Viral/genética
7.
Mol Ther ; 22(3): 575-587, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24419083

RESUMO

As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Lentivirus/genética , Sindbis virus/genética , Proteínas do Envelope Viral/genética , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Imunidade Celular/imunologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA