Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Autoimmun ; : 103247, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734536

RESUMO

Sarcoidosis is a granulomatous multiorgan disease, thought to result from exposure to yet unidentified antigens in genetically susceptible individuals. The exaggerated inflammatory response that leads to granuloma formation is highly complex and involves the innate and adaptive immune system. Consecutive immunological studies using advanced technology have increased our understanding of aberrantly activated immune cells, mediators and pathways that influence the formation, maintenance and resolution of granulomas. Over the years, it has become increasingly clear that disease immunopathogenesis can only be understood if the clinical heterogeneity of sarcoidosis is taken into consideration, along with the distribution of immune cells in peripheral blood and involved organs. Most studies offer an immunological snapshot during disease course, while the cellular composition of both the circulation and tissue microenvironment may change over time. Despite these challenges, novel insights on the role of the immune system are continuously published, thus bringing the field forward. This review highlights current knowledge on the innate and adaptive immune responses involved in sarcoidosis pathogenesis, as well as the pathways involved in non-resolving disease and fibrosis development. Additionally, we describe proposed immunological mechanisms responsible for drug-induced sarcoid like reactions. Although many aspects of disease immunopathogenesis remain to be unraveled, the identification of crucial immune reactions in sarcoidosis may help identify new treatment targets. We therefore also discuss potential therapies and future strategies based on the latest immunological findings.

2.
Elife ; 122023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752598

RESUMO

During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.


Assuntos
COVID-19 , Doenças Transmissíveis , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Idoso , Monócitos , Fator de Necrose Tumoral alfa/metabolismo , Proteômica , COVID-19/metabolismo , SARS-CoV-2 , Células Dendríticas
4.
Nat Metab ; 4(6): 739-758, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760869

RESUMO

Mitochondria are the main consumers of oxygen within the cell. How mitochondria sense oxygen levels remains unknown. Here we show an oxygen-sensitive regulation of TFAM, an activator of mitochondrial transcription and replication, whose alteration is linked to tumours arising in the von Hippel-Lindau syndrome. TFAM is hydroxylated by EGLN3 and subsequently bound by the von Hippel-Lindau tumour-suppressor protein, which stabilizes TFAM by preventing mitochondrial proteolysis. Cells lacking wild-type VHL or in which EGLN3 is inactivated have reduced mitochondrial mass. Tumorigenic VHL variants leading to different clinical manifestations fail to bind hydroxylated TFAM. In contrast, cells harbouring the Chuvash polycythaemia VHLR200W mutation, involved in hypoxia-sensing disorders without tumour development, are capable of binding hydroxylated TFAM. Accordingly, VHL-related tumours, such as pheochromocytoma and renal cell carcinoma cells, display low mitochondrial content, suggesting that impaired mitochondrial biogenesis is linked to VHL tumorigenesis. Finally, inhibiting proteolysis by targeting LONP1 increases mitochondrial content in VHL-deficient cells and sensitizes therapy-resistant tumours to sorafenib treatment. Our results offer pharmacological avenues to sensitize therapy-resistant VHL tumours by focusing on the mitochondria.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Proteases Dependentes de ATP , Carcinoma de Células Renais/genética , Humanos , Neoplasias Renais/genética , Proteínas Mitocondriais , Biogênese de Organelas , Oxigênio , Doença de von Hippel-Lindau/genética
5.
J Leukoc Biol ; 111(4): 857-866, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34431542

RESUMO

Sarcoidosis is a systemic inflammatory disease mainly affecting the lungs. The hallmark of sarcoidosis are granulomas that are surrounded by activated T cells, likely targeting the disease-inducing antigen. IFNγ-producing Th1 and Th17.1 T cells are elevated in sarcoidosis and associate with disease progression. Monocytes and dendritic cells (DCs) are antigen-presenting cells (APCs) and required for T cell activation. Several subsets of monocytes and DCs with different functions were identified in sarcoidosis. However, to what extent different monocyte and DC subsets can support activation and skewing of T cells in sarcoidosis is still unclear. In this study, we performed a transcriptional and functional side-by-side comparison of sorted monocytes and DCs from matched blood and bronchoalveolar lavage (BAL) fluid of sarcoidosis patients. Transcriptomic analysis of all subsets showed upregulation of genes related to T cell activation and antigen presentation in DCs compared with monocytes. Allogeneic T cell proliferation was higher after coculture with monocytes and DCs from blood compared with BAL and DCs induced more T cell proliferation compared with monocytes. After coculture, proliferating T cells showed high expression of the transcription factor Tbet and IFNγ production. We also identified Tbet and RORγt coexpressing T cells that mainly produced IFNγ. Our data show that DCs rather than monocytes from sarcoidosis patients have the ability to activate and polarize T cells towards Th1 and Th17.1 cells. This study provides a useful in vitro tool to better understand the contribution of monocytes and DCs to T cell activation and immunopathology in sarcoidosis.


Assuntos
Sarcoidose , Células Th1 , Células Dendríticas , Humanos , Interferon gama/metabolismo , Pulmão/patologia , Monócitos , Sarcoidose/patologia , Células Th17
6.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33492309

RESUMO

The immunopathology of coronavirus disease 2019 (COVID-19) remains enigmatic, causing immunodysregulation and T cell lymphopenia. Monocytic myeloid-derived suppressor cells (M-MDSCs) are T cell suppressors that expand in inflammatory conditions, but their role in acute respiratory infections remains unclear. We studied the blood and airways of patients with COVID-19 across disease severities at multiple time points. M-MDSC frequencies were elevated in blood but not in nasopharyngeal or endotracheal aspirates of patients with COVID-19 compared with healthy controls. M-MDSCs isolated from patients with COVID-19 suppressed T cell proliferation and IFN-γ production partly via an arginase 1-dependent (Arg-1-dependent) mechanism. Furthermore, patients showed increased Arg-1 and IL-6 plasma levels. Patients with COVID-19 had fewer T cells and downregulated expression of the CD3ζ chain. Ordinal regression showed that early M-MDSC frequency predicted subsequent disease severity. In conclusion, M-MDSCs expanded in the blood of patients with COVID-19, suppressed T cells, and were strongly associated with disease severity, indicating a role for M-MDSCs in the dysregulated COVID-19 immune response.


Assuntos
COVID-19/imunologia , Células Supressoras Mieloides/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Arginase/sangue , COVID-19/sangue , COVID-19/patologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Influenza Humana/sangue , Influenza Humana/imunologia , Influenza Humana/patologia , Interferon gama/sangue , Interleucina-6/sangue , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/patologia , Pandemias , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , SARS-CoV-2 , Índice de Gravidade de Doença , Linfócitos T/imunologia , Linfócitos T/patologia , Adulto Jovem
7.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33446605

RESUMO

BACKGROUND: Pulmonary sarcoidosis is an inflammatory disease characterised by granuloma formation and heterogeneous clinical outcome. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine contributing to granuloma formation and high levels of TNF have been shown to associate with progressive disease. Mononuclear phagocytes (MNPs) are potent producers of TNF and highly responsive to inflammation. In sarcoidosis, alveolar macrophages have been well studied. However, MNPs also include monocytes/monocyte-derived cells and dendritic cells, which are poorly studied in sarcoidosis, despite their central role in inflammation. OBJECTIVE: To determine the role of pulmonary monocyte-derived cells and dendritic cells during sarcoidosis. METHODS: We performed in-depth phenotypic, functional and transcriptomic analysis of MNP subsets from blood and bronchoalveolar lavage (BAL) fluid from 108 sarcoidosis patients and 30 healthy controls. We followed the clinical development of patients and assessed how the repertoire and function of MNP subsets at diagnosis correlated with 2-year disease outcome. RESULTS: Monocytes/monocyte-derived cells were increased in blood and BAL of sarcoidosis patients compared to healthy controls. Interestingly, high frequencies of blood intermediate monocytes at time of diagnosis associated with chronic disease development. RNA sequencing analysis showed highly inflammatory MNPs in BAL of sarcoidosis patients. Furthermore, frequencies of BAL monocytes/monocyte-derived cells producing TNF without exogenous stimulation at time of diagnosis increased in patients that were followed longitudinally. In contrast to alveolar macrophages, the frequency of TNF-producing BAL monocytes/monocyte-derived cells at time of diagnosis was highest in sarcoidosis patients that developed progressive disease. CONCLUSION: Our data show that pulmonary monocytes/monocyte-derived cells are highly inflammatory and can be used as a predictor of disease outcome in sarcoidosis patients.


Assuntos
Sarcoidose Pulmonar , Sarcoidose , Líquido da Lavagem Broncoalveolar , Humanos , Monócitos , Fator de Necrose Tumoral alfa
8.
Immunity ; 54(2): 259-275.e7, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33382972

RESUMO

The study of human macrophages and their ontogeny is an important unresolved issue. Here, we use a humanized mouse model expressing human cytokines to dissect the development of lung macrophages from human hematopoiesis in vivo. Human CD34+ hematopoietic stem and progenitor cells (HSPCs) generated three macrophage populations, occupying separate anatomical niches in the lung. Intravascular cell labeling, cell transplantation, and fate-mapping studies established that classical CD14+ blood monocytes derived from HSPCs migrated into lung tissue and gave rise to human interstitial and alveolar macrophages. In contrast, non-classical CD16+ blood monocytes preferentially generated macrophages resident in the lung vasculature (pulmonary intravascular macrophages). Finally, single-cell RNA sequencing defined intermediate differentiation stages in human lung macrophage development from blood monocytes. This study identifies distinct developmental pathways from circulating monocytes to lung macrophages and reveals how cellular origin contributes to human macrophage identity, diversity, and localization in vivo.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Antígenos CD34/metabolismo , Biodiversidade , Diferenciação Celular , Movimento Celular , Células Cultivadas , Sangue Fetal/citologia , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Pulmão/irrigação sanguínea , Receptores de IgG/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Nicho de Células-Tronco
9.
Sci Rep ; 10(1): 15328, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948789

RESUMO

Pulmonary sarcoidosis has unknown etiology, a difficult diagnostic procedure and no curative treatment. Extracellular vesicles including exosomes are nano-sized entities released from all cell types. Previous studies of exosomes from bronchoalveolar lavage fluid (BALF) of sarcoidosis patients have revealed pro-inflammatory components and abilities, but cell sources and mechanisms have not been identified. In the current study, we found that BALF exosomes from sarcoidosis patients, but not from healthy individuals, induced a dose-dependent elevation of intracellular IL-1ß in monocytes. Analyses of supernatants showed that patient exosomes also induced release of IL-1ß, IL-6 and TNF from both PBMCs and enriched monocytes, suggesting that the observed effect is direct on monocytes. The potently chemotactic chemokine CCL2 was induced by exosomes from a subgroup of patients, and in a blocking assay the exosome-induced CCL2 was reduced for 13 out of 19 patients by the asthma drug Montelukast, a cysteinyl leukotriene receptor antagonist. Further, reactive oxygen species generation by PBMCs was induced to a higher degree by patient exosomes compared to healthy exosomes. These findings add to an emerging picture of exosomes as mediators and disseminators of inflammation, and open for further investigations of the link between CCL2 and exosomal leukotrienes in sarcoidosis.


Assuntos
Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Exossomos/metabolismo , Monócitos/metabolismo , Sarcoidose Pulmonar/patologia , Acetatos/farmacologia , Adulto , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Ciclopropanos/farmacologia , Exossomos/efeitos dos fármacos , Exossomos/patologia , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia
10.
Sci Immunol ; 5(49)2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620560

RESUMO

CD8+ T cell exhaustion is a hallmark of many cancers and chronic infections. In mice, T cell factor 1 (TCF-1) maintains exhausted CD8+ T cell responses, whereas thymocyte selection-associated HMG box (TOX) is required for the epigenetic remodeling and survival of exhausted CD8+ T cells. However, it has remained unclear to what extent these transcription factors play analogous roles in humans. In this study, we mapped the expression of TOX and TCF-1 as a function of differentiation and specificity in the human CD8+ T cell landscape. Here, we demonstrate that circulating TOX+ CD8+ T cells exist in most humans, but that TOX is not exclusively associated with exhaustion. Effector memory CD8+ T cells generally expressed TOX, whereas naive and early-differentiated memory CD8+ T cells generally expressed TCF-1. Cytolytic gene and protein expression signatures were also defined by the expression of TOX. In the context of a relentless immune challenge, exhausted HIV-specific CD8+ T cells commonly expressed TOX, often in clusters with various activation markers and inhibitory receptors, and expressed less TCF-1. However, polyfunctional memory CD8+ T cells specific for cytomegalovirus (CMV) or Epstein-Barr virus (EBV) also expressed TOX, either with or without TCF-1. A similar phenotype was observed among HIV-specific CD8+ T cells from individuals who maintained exceptional immune control of viral replication. Collectively, these data demonstrate that TOX is expressed by most circulating effector memory CD8+ T cell subsets and not exclusively linked to exhaustion.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas de Grupo de Alta Mobilidade/imunologia , Células T de Memória/imunologia , Antígenos Virais/imunologia , Doença Crônica , Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/imunologia , Viroses/imunologia , Vírus/imunologia
11.
Cell Rep ; 28(8): 2124-2139.e6, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433987

RESUMO

Cytotoxic lymphocytes normally kill virus-infected cells by apoptosis induction. Cytotoxic granule-dependent apoptosis induction engages the intrinsic apoptosis pathway, whereas death receptor (DR)-dependent apoptosis triggers the extrinsic apoptosis pathway. Hantaviruses, single-stranded RNA viruses of the order Bunyavirales, induce strong cytotoxic lymphocyte responses in infected humans. Cytotoxic lymphocytes, however, are largely incapable of eradicating hantavirus-infected cells. Here, we show that the prototypic hantavirus, Hantaan virus (HTNV), induces TRAIL production but strongly inhibits TRAIL-mediated extrinsic apoptosis induction in infected cells by downregulating DR5 cell surface expression. Mechanistic analyses revealed that HTNV triggers both 26S proteasome-dependent degradation of DR5 through direct ubiquitination of DR5 and hampers DR5 transport to the cell surface. These results corroborate earlier findings, demonstrating that hantavirus also inhibits cytotoxic cell granule-dependent apoptosis induction. Together, these findings show that HTNV counteracts intrinsic and extrinsic apoptosis induction pathways, providing a defense mechanism utilized by hantaviruses to inhibit cytotoxic cell-mediated eradication of infected cells.


Assuntos
Regulação para Baixo , Infecções por Hantavirus/metabolismo , Infecções por Hantavirus/patologia , Orthohantavírus/fisiologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Células A549 , Adolescente , Adulto , Idoso , Morte Celular , Membrana Celular/metabolismo , Citoproteção , Feminino , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Frações Subcelulares/metabolismo , Ubiquitinação/efeitos dos fármacos , Adulto Jovem
12.
Front Immunol ; 10: 1116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156653

RESUMO

NK cells in the human lung respond to influenza A virus- (IAV-) infected target cells. However, the detailed functional capacity of human lung and peripheral blood NK cells remains to be determined in IAV and other respiratory viral infections. Here, we investigated the effects of IAV infection on human lung and peripheral blood NK cells in vitro and ex vivo following clinical infection. IAV infection of lung- and peripheral blood-derived mononuclear cells in vitro induced NK cell hyperresponsiveness to K562 target cells, including increased degranulation and cytokine production particularly in the CD56brightCD16- subset of NK cells. Furthermore, lung CD16- NK cells showed increased IAV-mediated but target cell-independent activation compared to CD16+ lung NK cells or total NK cells in peripheral blood. IAV infection rendered peripheral blood NK cells responsive toward the normally NK cell-resistant lung epithelial cell line A549, indicating that NK cell activation during IAV infection could contribute to killing of surrounding non-infected epithelial cells. In vivo, peripheral blood CD56dimCD16+ and CD56brightCD16- NK cells were primed during acute IAV infection, and a small subset of CD16-CD49a+CXCR3+ NK cells could be identified, with CD49a and CXCR3 potentially promoting homing to and tissue-retention in the lung during acute infection. Together, we show that IAV respiratory viral infections prime otherwise hyporesponsive lung NK cells, indicating that both CD16+ and CD16- NK cells including CD16-CD49a+ tissue-resident NK cells could contribute to host immunity but possibly also tissue damage in clinical IAV infection.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Pulmão/fisiologia , Apresentação de Antígeno , Circulação Sanguínea , Hiper-Reatividade Brônquica/metabolismo , Citotoxicidade Imunológica , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Ativação Linfocitária
13.
J Leukoc Biol ; 105(4): 797-807, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742337

RESUMO

Sarcoidosis is a T-cell driven inflammatory disease characterized by granuloma formation. Mononuclear phagocytes (MNPs)-macrophages, monocytes, and dendritic cells (DCs)-are likely critical in sarcoidosis as they initiate and maintain T cell activation and contribute to granuloma formation by cytokine production. Granulomas manifest primarily in lungs and lung-draining lymph nodes (LLNs) but these compartments are less studied compared to blood and bronchoalveolar lavage (BAL). Sarcoidosis can present with an acute onset (usually Löfgren's syndrome (LS)) or a gradual onset (non-LS). LS patients typically recover within 2 years while 60% of non-LS patients maintain granulomas for up to 5 years. Here, four LS and seven non-LS patients underwent bronchoscopy with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). From each patient, blood, BAL, endobronchial biopsies (EBBs), and LLN samples obtained by EBUS-TBNA were collected and MNPs characterized using multicolor flow cytometry. Six MNP subsets were identified at varying frequencies in the anatomical compartments investigated. Importantly, monocytes and DCs were most mature with migratory potential in BAL and EBBs but not in the LLNs suggesting heterogeneity in MNPs in the compartments typically affected in sarcoidosis. Additionally, in LS patients, frequencies of DC subsets were lower or lacking in LLNs and EBBs, respectively, compared to non-LS patients that may be related to the disease outcome. Our work provides a foundation for future investigations of MNPs in sarcoidosis to identify immune profiles of patients at risk of developing severe disease with the aim to provide early treatment to slow down disease progression.


Assuntos
Leucócitos Mononucleares/patologia , Pulmão/patologia , Linfonodos/patologia , Fagócitos/patologia , Sarcoidose/sangue , Sarcoidose/patologia , Adulto , Antígenos CD/metabolismo , Líquido da Lavagem Broncoalveolar , Contagem de Células , Sobrevivência Celular , Células Dendríticas/patologia , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Mucosa/patologia , Receptores CCR7/metabolismo
14.
PLoS One ; 12(6): e0177920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591131

RESUMO

Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.


Assuntos
Células Dendríticas/ultraestrutura , Interações Hospedeiro-Patógeno , Vírus da Influenza A/ultraestrutura , Vírion/ultraestrutura , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Endossomos/virologia , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Antígenos HLA-DR/isolamento & purificação , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Proteínas de Membrana Lisossomal/isolamento & purificação , Microscopia , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Transporte Vesicular/isolamento & purificação , Proteínas do Core Viral/genética , Proteínas do Core Viral/isolamento & purificação , Vírion/genética , Vírion/patogenicidade , Replicação Viral/genética
15.
Front Immunol ; 8: 499, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507549

RESUMO

The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs)-together termed mononuclear phagocytes (MNPs)-line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may improve clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted or modulated in order to attain favorable responses that can improve preventive or treatment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.

16.
J Vis Exp ; (119)2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28190064

RESUMO

The lungs are constantly exposed to the external environment, which in addition to harmless particles, also contains pathogens, allergens, and toxins. In order to maintain tolerance or to induce an immune response, the immune system must appropriately handle inhaled antigens. Lung dendritic cells (DCs) are essential in maintaining a delicate balance to initiate immunity when required without causing collateral damage to the lungs due to an exaggerated inflammatory response. While there is a detailed understanding of the phenotype and function of immune cells such as DCs in human blood, the knowledge of these cells in less accessible tissues, such as the lungs, is much more limited, since studies of human lung tissue samples, especially from healthy individuals, are scarce. This work presents a strategy to generate detailed spatial and phenotypic characterization of lung tissue resident DCs in healthy humans that undergo a bronchoscopy for the sampling of endobronchial biopsies. Several small biopsies can be collected from each individual and can be subsequently embedded for ultrafine sectioning or enzymatically digested for advanced flow cytometric analysis. The outlined protocols have been optimized to yield maximum information from small tissue samples that, under steady-state conditions, contain only a low frequency of DCs. While the present work focuses on DCs, the methods described can directly be expanded to include other (immune) cells of interest found in mucosal lung tissue. Furthermore, the protocols are also directly applicable to samples obtained from patients suffering from pulmonary diseases where bronchoscopy is part of establishing the diagnosis, such as chronic obstructive pulmonary disease (COPD), sarcoidosis, or lung cancer.


Assuntos
Células Dendríticas/imunologia , Citometria de Fluxo , Imuno-Histoquímica , Imunofenotipagem/métodos , Pulmão/citologia , Biópsia , Broncoscopia , Humanos , Pulmão/imunologia
17.
J Invest Dermatol ; 137(4): 865-873, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28011143

RESUMO

Epidermal Langerhans cells (LCs) are spatially separated from dermal dendritic cells (DCs) in healthy human skin. In active psoriasis, maintained by local production of IL-23 and IL-17, inflammatory DCs infiltrate both skin compartments. Here we show that CCR2+ epidermal DCs (eDCs) were confined to lesional psoriasis and phenotypically distinct from dermal DCs. The eDCs exceeded the number of LCs and displayed high expression of genes involved in neutrophil recruitment and the activation of keratinocytes and T cells. Resident LCs responded to toll-like receptor 4 and toll-like receptor 7/8 activation with increased IL-23 production, whereas eDCs additionally produced IL-1ß together with IL-23 and tumor necrosis factor. Psoriasis typically recur in fixed skin lesions. eDCs were absent from resolved psoriasis. Instead, LCs from anti-tumor necrosis factor-treated lesions retained high IL23A expression and responded to toll-like receptor stimulation by producing IL-23. Our results reveal phenotypic and functional properties of eDCs and resident LCs in different clinical phases of psoriasis, and the capacity of these cells to amplify the epidermal microenvironment through the secretion of IL-17 polarizing cytokines.


Assuntos
Citocinas/metabolismo , Células Dendríticas/citologia , Células de Langerhans/citologia , Psoríase/patologia , Biópsia por Agulha , Diferenciação Celular , Células Dendríticas/ultraestrutura , Células Epidérmicas , Citometria de Fluxo/métodos , Humanos , Imuno-Histoquímica , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Células de Langerhans/ultraestrutura , Microscopia Confocal/métodos , Psoríase/imunologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência , Estudos de Amostragem , Estatísticas não Paramétricas , Receptores Toll-Like/metabolismo
18.
Eur Respir J ; 48(2): 484-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230441

RESUMO

Disease phenotypes of pulmonary sarcoidosis are distinguished by clinical rather than immunological criteria. We aimed to characterise patterns of CD4(+) T-cell lineage plasticity underlying the differences in clinical presentation and disease course between the acute form, Löfgren's syndrome, and the heterogeneous, potentially progressive "non-Löfgren" form.33 pulmonary sarcoidosis patients and nine controls underwent bronchoscopy with bronchoalveolar lavage. CD4(+) T-cell transcription factor, chemokine receptor and T-cell receptor expression, proliferation and cytokine production were assessed in the lavage fluid and peripheral blood using flow cytometry and multicolour FluoroSpot.CD4(+) T-cells simultaneously expressing the T-helper cell (Th)1 and Th17 transcriptional regulators T-bet and RORγT (T-bet(+)RORγT(+)) were identified in the lavage, but not blood, of all subjects, and to a significantly higher degree in Löfgren's patients. T-bet(+)RORγT(+) cells proliferated actively, produced interferon (IFN)γ and interleukin (IL)-17A, co-expressed the chemokine receptors CXCR3 and CCR6, and correlated with nonchronic disease. T-cell receptor-restricted Vα2.3(+)Vß22(+) T-cells strongly co-expressed T-bet/RORγT and CXCR3/CCR6. Cytokine production was more heterogeneous in Löfgren's patients, with significantly higher IL-17A, IL-10, IL-22 and IL-2, but lower IFNγ.Here we demonstrate the presence of lung T-bet(+)RORγT(+)CXCR3(+)CCR6(+) CD4(+) T-cells and Th17-associated cytokines especially in sarcoidosis patients with a favourable prognosis, suggesting a Th1/Th17-permissive environment in the lung with implications for disease resolution.


Assuntos
Linfócitos T CD4-Positivos/citologia , Sarcoidose/fisiopatologia , Adulto , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Broncoscopia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Linhagem da Célula , Proliferação de Células , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fenótipo , Prognóstico , Sarcoidose Pulmonar/fisiopatologia , Células Th1/citologia , Células Th1/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Adulto Jovem
19.
J Exp Med ; 210(5): 1049-63, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23569326

RESUMO

Human BDCA3(+) dendritic cells (DCs), the proposed equivalent to mouse CD8α(+) DCs, are widely thought to cross present antigens on MHC class I (MHCI) molecules more efficiently than other DC populations. If true, it is unclear whether this reflects specialization for cross presentation or a generally enhanced ability to present antigens on MHCI. We compared presentation by BDCA3(+) DCs with BDCA1(+) DCs using a quantitative approach whereby antigens were targeted to distinct intracellular compartments by receptor-mediated internalization. As expected, BDCA3(+) DCs were superior at cross presentation of antigens delivered to late endosomes and lysosomes by uptake of anti-DEC205 antibody conjugated to antigen. This difference may reflect a greater efficiency of antigen escape from BDCA3(+) DC lysosomes. In contrast, if antigens were delivered to early endosomes through CD40 or CD11c, BDCA1(+) DCs were as efficient at cross presentation as BDCA3(+) DCs. Because BDCA3(+) DCs and BDCA1(+) DCs were also equivalent at presenting peptides and endogenously synthesized antigens, BDCA3(+) DCs are not likely to possess mechanisms for cross presentation that are specific to this subset. Thus, multiple DC populations may be comparably effective at presenting exogenous antigens to CD8(+) T cells as long as the antigen is delivered to early endocytic compartments.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Superfície/metabolismo , Antígenos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Endossomos/imunologia , Animais , Antígenos CD/metabolismo , Antígenos CD1 , Antígenos CD40/metabolismo , Compartimento Celular , Separação Celular , Glicoproteínas , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Lectinas Tipo C/metabolismo , Lisossomos/imunologia , Camundongos , Antígenos de Histocompatibilidade Menor , Fenótipo , Receptores de Superfície Celular/metabolismo , Trombomodulina
20.
Adv Exp Med Biol ; 762: 263-88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22975879

RESUMO

As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen.


Assuntos
Vacinas contra a AIDS/imunologia , Células Dendríticas/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/administração & dosagem , Adenoviridae/genética , Adjuvantes Imunológicos/administração & dosagem , Vetores Genéticos , Anticorpos Anti-HIV/biossíntese , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA