Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 6(18): 5415-5428, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736672

RESUMO

Stored red blood cells (RBCs) incur biochemical and morphological changes, collectively termed the storage lesion. Functionally, the storage lesion manifests as slower oxygen unloading from RBCs, which may compromise the efficacy of transfusions where the clinical imperative is to rapidly boost oxygen delivery to tissues. Recent analysis of large real-world data linked longer storage with increased recipient mortality. Biochemical rejuvenation with a formulation of adenosine, inosine, and pyruvate can restore gas-handling properties, but its implementation is impractical for most clinical scenarios. We tested whether storage under hypoxia, previously shown to slow biochemical degradation, also preserves gas-handling properties of RBCs. A microfluidic chamber, designed to rapidly switch between oxygenated and anoxic superfusates, was used for single-cell oxygen saturation imaging on samples stored for up to 49 days. Aliquots were also analyzed flow cytometrically for side-scatter (a proposed proxy of O2 unloading kinetics), metabolomics, lipidomics, and redox proteomics. For benchmarking, units were biochemically rejuvenated at 4 weeks of standard storage. Hypoxic storage hastened O2 unloading in units stored to 35 days, an effect that correlated with side-scatter but was not linked to posttranslational modifications of hemoglobin. Although hypoxic storage and rejuvenation produced distinct biochemical changes, a subset of metabolites including pyruvate, sedoheptulose 1-phosphate, and 2/3 phospho-d-glycerate, was a common signature that correlated with changes in O2 unloading. Correlations between gas handling and lipidomic changes were modest. Thus, hypoxic storage of RBCs preserves key metabolic pathways and O2 exchange properties, thereby improving the functional quality of blood products and potentially influencing transfusion outcomes.


Assuntos
Preservação de Sangue , Oxigênio , Adenosina/metabolismo , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Hipóxia/metabolismo , Inosina/metabolismo , Oxigênio/metabolismo , Fosfatos/metabolismo , Piruvatos/metabolismo
2.
Transfusion ; 59(9): 2952-2963, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31294868

RESUMO

BACKGROUND: Rejuvenation of stored red blood cells (RBCs) increases levels of adenosine 5'-triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) to those of fresh cells. This study aimed to optimize and validate the US-approved process to a UK setting for manufacture and issue of rejuvenated RBCs for a multicenter randomized controlled clinical trial in cardiac surgery. STUDY DESIGN AND METHODS: Rejuvenation of leukoreduced RBC units involved adding a solution containing pyruvate, inosine, phosphate, and adenine (Rejuvesol, Zimmer Biomet), warming at 37°C for 60 minutes, then "manual" washing with saline adenine glucose mannitol solution. A laboratory study was conducted on six pools of ABO/D-matched units made the day after donation. On Days 7, 21, and 28 of 4 ± 2°C storage, one unit per pool was rejuvenated and measured over 96 hours for volume, hematocrit, hemolysis, ATP, 2,3-DPG, supernatant potassium, lactate, and purines added (inosine) or produced (hypoxanthine) by rejuvenation. Subsequently, an operational validation (two phases of 32 units each) was undertaken, with results from the first informing a trial component specification applied to the second. Rejuvenation effects were also tested on crossmatch reactivity and RBC antigen profiles. RESULTS: Rejuvenation raised 2,3-DPG to, and ATP above, levels of fresh cells. The final component had potassium and hemolysis values below those of standard storage Days 7 and 21, respectively, containing 1.2% exogenous inosine and 500 to 1900 µmoles/unit of hypoxanthine. The second operational validation met compliance to the trial component specification. Rejuvenation did not adversely affect crossmatch reactivity or RBC antigen profiles. CONCLUSION: The validated rejuvenation process operates within defined quality limits, preserving RBC immunophenotypes, enabling manufacture for clinical trials.


Assuntos
Preservação de Sangue/métodos , Eritrócitos/fisiologia , Medicina Regenerativa/métodos , Rejuvenescimento/fisiologia , 2,3-Difosfoglicerato/metabolismo , Trifosfato de Adenosina/sangue , Tipagem e Reações Cruzadas Sanguíneas , Perda Sanguínea Cirúrgica/prevenção & controle , Preservação de Sangue/normas , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Criopreservação/métodos , Contagem de Eritrócitos , Transfusão de Eritrócitos/normas , Eritrócitos/citologia , Hemólise/fisiologia , Humanos , Imunofenotipagem , Manufaturas , Purinas/sangue , Controle de Qualidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Medicina Regenerativa/normas
3.
Br J Haematol ; 175(3): 381-392, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27650431

RESUMO

Allogeneic platelet transfusions are widely used for the prevention and treatment of bleeding in thrombocytopenia. Recent evidence suggests platelet transfusions have limited efficacy and are associated with uncertain immunomodulatory risks and concerns about viral or bacterial transmission. Alternatives to transfusion are a well-recognised tenet of Patient Blood Management, but there has been less focus on different strategies to reduce bleeding risk by comparison to platelet transfusion. Direct alternatives to platelet transfusion include agents to stimulate endogenous platelet production (thrombopoietin mimetics), optimising platelet adhesion to endothelium by treating anaemia or increasing von Willebrand factor levels (desmopressin), increasing formation of cross-linked fibrinogen (activated recombinant factor VII, fibrinogen concentrate or recombinant factor XIII), decreasing fibrinolysis (tranexamic acid or epsilon aminocaproic acid) or using artificial or modified platelets (cryopreserved platelets, lyophilised platelets, haemostatic particles, liposomes, engineered nanoparticles or infusible platelet membranes). The evidence base to support the use of these alternatives is variable, but an area of active research. Much of the current randomised controlled trial focus is on evaluation of the use of thrombopoietin mimetics and anti-fibrinolytics. It is also recognised that one alternative strategy to platelet transfusion is choosing not to transfuse at all.


Assuntos
Terapias Complementares , Hemorragia/prevenção & controle , Hemorragia/terapia , Transfusão de Plaquetas , Trombocitopenia/complicações , Antifibrinolíticos/uso terapêutico , Mimetismo Biológico , Fatores de Coagulação Sanguínea/uso terapêutico , Transfusão de Sangue , Terapias Complementares/métodos , Humanos , Nanopartículas , Transfusão de Plaquetas/efeitos adversos , Trombopoetina/uso terapêutico
4.
Blood ; 120(24): 4859-68, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22972982

RESUMO

We recently identified 68 genomic loci where common sequence variants are associated with platelet count and volume. Platelets are formed in the bone marrow by megakaryocytes, which are derived from hematopoietic stem cells by a process mainly controlled by transcription factors. The homeobox transcription factor MEIS1 is uniquely transcribed in megakaryocytes and not in the other lineage-committed blood cells. By ChIP-seq, we show that 5 of the 68 loci pinpoint a MEIS1 binding event within a group of 252 MK-overexpressed genes. In one such locus in DNM3, regulating platelet volume, the MEIS1 binding site falls within a region acting as an alternative promoter that is solely used in megakaryocytes, where allelic variation dictates different levels of a shorter transcript. The importance of dynamin activity to the latter stages of thrombopoiesis was confirmed by the observation that the inhibitor Dynasore reduced murine proplatelet for-mation in vitro.


Assuntos
Plaquetas/metabolismo , Dinamina III/genética , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Megacariócitos/metabolismo , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação/genética , Plaquetas/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Expressão Gênica , Variação Genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hidrazonas/farmacologia , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Contagem de Plaquetas , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Transcrição Gênica
5.
Nat Genet ; 44(4): 435-9, S1-2, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366785

RESUMO

The exon-junction complex (EJC) performs essential RNA processing tasks. Here, we describe the first human disorder, thrombocytopenia with absent radii (TAR), caused by deficiency in one of the four EJC subunits. Compound inheritance of a rare null allele and one of two low-frequency SNPs in the regulatory regions of RBM8A, encoding the Y14 subunit of EJC, causes TAR. We found that this inheritance mechanism explained 53 of 55 cases (P < 5 × 10(-228)) of the rare congenital malformation syndrome. Of the 53 cases with this inheritance pattern, 51 carried a submicroscopic deletion of 1q21.1 that has previously been associated with TAR, and two carried a truncation or frameshift null mutation in RBM8A. We show that the two regulatory SNPs result in diminished RBM8A transcription in vitro and that Y14 expression is reduced in platelets from individuals with TAR. Our data implicate Y14 insufficiency and, presumably, an EJC defect as the cause of TAR syndrome.


Assuntos
Predisposição Genética para Doença , Proteínas de Ligação a RNA/genética , Trombocitopenia/genética , Deformidades Congênitas das Extremidades Superiores/genética , Regiões 5' não Traduzidas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Criança , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Contagem de Plaquetas , Polimorfismo de Nucleotídeo Único , Rádio (Anatomia)/anormalidades , Alinhamento de Sequência , Análise de Sequência de DNA , Trombocitopenia/congênito , Adulto Jovem , Peixe-Zebra/genética
6.
Dev Cell ; 20(5): 597-609, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21571218

RESUMO

Hematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors--GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL--in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/metabolismo , Genoma Humano/genética , Megacariócitos/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sítios de Ligação , Diferenciação Celular , Células Cultivadas , Humanos , Megacariócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteína 1 de Leucemia Linfocítica Aguda de Células T
7.
Blood ; 115(24): 5069-79, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20351310

RESUMO

Exposed subendothelial collagen acts as a substrate for platelet adhesion and thrombus formation after vascular injury. Synthetic collagen-derived triple-helical peptides, designated collagen-related peptide (CRP), GFOGER, and VWF-III, can specifically engage the platelet collagen receptors, glycoprotein VI and integrin alpha(2)beta(1), and plasma von Willebrand factor (VWF), respectively. Hitherto, the role of these 3 collagen-binding axes has been studied indirectly. Use of these uniform peptide substrates, rather than collagen fibers, provides independent control of each axis. Here, we use confocal imaging and novel image analysis techniques to investigate the effects of receptor-ligand engagement on platelet binding and activation during thrombus formation under flow conditions. At low shear (100s(-1) and 300s(-1)), both GFOGER and CRP are required for thrombus formation. At 1000s(-1), a combination of either CRP or GFOGER with VWF-III induces comparable thrombus formation, and VWF-III increases thrombus deposition at all shear rates, being indispensable at 3000s(-1). A combination of CRP and VWF-III is sufficient to support extensive platelet deposition at 3000s(-1), with slight additional effect of GFOGER. Measurement of thrombus height after specific receptor blockade or use of altered proportions of peptides indicates a signaling rather than adhesive role for glycoprotein VI, and primarily adhesive roles for both alpha(2)beta(1) and the VWF axis.


Assuntos
Plaquetas/metabolismo , Colágeno/metabolismo , Integrina alfa2beta1/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Colágeno/metabolismo , Trombose/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Mimetismo Molecular , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Adesividade Plaquetária/fisiologia , Ligação Proteica/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Transdução de Sinais/fisiologia , Estresse Mecânico , Fator de von Willebrand/metabolismo
8.
Blood ; 111(10): 4986-96, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18305222

RESUMO

We have analyzed the adhesion of human and murine platelets, and of recombinant human and murine GpVI ectodomains, to synthetic triple-helical collagen-like peptides. These included 57 peptides derived from the sequence of human type III collagen and 9 peptides derived from the cyanogen bromide fragment of bovine type III collagen, alpha1(III)CB4. We have identified several peptides that interact with GpVI, in particular a peptide designated III-30 with the sequence GAOGLRGGAGPOGPEGGKGAAGPOGPO. Both human and murine platelets bound to peptide III-30 in a GpVI-dependent manner. III-30 also supported binding of recombinant GpVI ectodomains. Cross-linked III-30 induced aggregation of human and murine platelets, although with a lower potency than collagen-related peptide. Modifications of the peptide sequence indicated that the hydroxyproline residues play a significant role in supporting its GpVI reactivity. However, many peptides containing OGP/GPO motifs did not support adhesion to GpVI. These data indicate that the ability of a triple-helical peptide to bind GpVI is not solely determined by the presence or spatial arrangement of these OGP/GPO motifs within the peptides.


Assuntos
Colágeno Tipo III/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Plaquetas/metabolismo , Bovinos , Colágeno Tipo III/química , Humanos , Camundongos , Fragmentos de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/química , Ligação Proteica
9.
J Biol Chem ; 281(44): 33505-10, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16956881

RESUMO

Platelet activation by collagen relies on the interaction of the receptor glycoprotein VI (GPVI) with collagen helices. We have previously generated two recombinant single chain human antibodies (scFvs) to human GPVI. The first, 10B12, binds to the collagen-binding site on the apical surface between the two immunoglobulin-like domains (D1D2) of the receptor and so directly inhibits GPVI function. The second, 1C3, binds D1D2 independently of 10B12 and has been shown to have a more subtle effect on platelet responses to collagen. Here we have shown that 1C3 potentiates the effect of 10B12 on platelet aggregation induced by collagen and cross-linked collagen-related peptide (CRP-XL). We investigated this by measuring the effect of both scFvs on the binding of D1D2 to immobilized collagen and CRP. As expected, 10B12 completely inhibited binding of GPVI to each ligand in a dose-dependent manner. However, 1C3 inhibited only a proportion of GPVI binding to its ligands, implying that it interferes with another aspect of ligand recognition by GPVI. To further understand the mode of inhibition, we used a unique set of CRPs in which the content of critical glycine-proline-hydroxyproline (GPO) triplets was varied in relation to an "inert" scaffold sequence of GPP motifs. We observed that a stepwise increase in D1D2 binding with (GPO)(2) content was blocked by 1C3. Together these results indicate that 1C3 inhibits clustering of the immunoglobulin-like domains of GPVI on collagen/CRPs, a conclusion that is supported by mapping the 1C3 epitope to the region including isoleucine 148 in D2.


Assuntos
Colágeno/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Anticorpos/imunologia , Epitopos/imunologia , Humanos , Isoleucina/genética , Isoleucina/metabolismo , Modelos Moleculares , Mutação/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/genética , Ligação Proteica , Estrutura Terciária de Proteína
10.
J Biol Chem ; 279(46): 47763-72, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15345717

RESUMO

Only three recognition motifs, GFOGER, GLOGER, and GASGER, all present in type I collagen, have been identified to date for collagen-binding integrins, such as alpha(2)beta(1). Sequence alignment was used to investigate the occurrence of related motifs in other human fibrillar collagens, and located a conserved array of novel GER motifs within their triple helical domains. We compared the integrin binding properties of synthetic triple helical peptides containing examples of such sequences (GLSGER, GMOGER, GAOGER, and GQRGER) or the previously identified motifs. Recombinant inserted (I) domains of integrin subunits alpha(1), alpha(2) and alpha(11) all bound poorly to all motifs other than GFOGER and GLOGER. Similarly, alpha(2)beta(1) -containing resting platelets adhered well only to GFOGER and GLOGER, while ADP-activated platelets, HT1080 cells and two active alpha(2)I domain mutants (E318W, locked open) bound all motifs well, indicating that affinity modulation determines the sequence selectivity of integrins. GxO/SGER peptides inhibited platelet adhesion to collagen monomers with order of potency F >/= L >/= M > A. These results establish GFOGER as a high affinity sequence, which can interact with the alpha(2)I domain in the absence of activation and suggest that integrin reactivity of collagens may be predicted from their GER content.


Assuntos
Motivos de Aminoácidos , Colágeno Tipo I/metabolismo , Integrina alfa2beta1/metabolismo , Peptídeos/metabolismo , Animais , Plaquetas/metabolismo , Linhagem Celular , Colágeno Tipo I/química , Colágeno Tipo I/genética , Humanos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Integrina alfa2beta1/genética , Peptídeos/química , Peptídeos/genética , Adesividade Plaquetária/fisiologia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
11.
Blood ; 103(4): 1333-41, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14563646

RESUMO

The platelet glycoproteins (GPs) Ib, integrin alpha(2)beta(1), and GPVI are considered central to thrombus formation. Recently, their relative importance has been re-evaluated based on data from murine knockout models. To examine their relationship during human thrombus formation on collagen type I fibers at high shear (1000 s(-1)), we tested a novel antibody against GPVI, an immunoglobulin single-chain variable fragment, 10B12, together with specific antagonists for GPIb alpha (12G1 Fab(2)) and alpha(2)beta(1) (6F1 mAb or GFOGER-GPP peptide). GPVI was found to be crucial for aggregate formation, Ca(2+) signaling, and phosphatidylserine (PS) exposure, but not for primary adhesion, even with more than 97% receptor blockade. Inhibiting alpha(2)beta(1) revealed its involvement in regulating Ca(2+) signaling, PS exposure, and aggregate size. Both GPIb alpha and alpha(2)beta(1) contributed to primary adhesion, showing overlapping function. The coinhibition of receptors revealed synergism in thrombus formation: the coinhibition of adenosine diphosphate (ADP) receptors with collagen receptors further decreased adhesion and aggregation, and, crucially, the complete eradication of thrombus formation required the coinhibition of GPVI with either GPIb alpha or alpha(2)beta(1). In summary, human platelet deposition on collagen depends on the concerted interplay of several receptors: GPIb in synergy with alpha(2)beta(1) mediating primary adhesion, reinforced by activation through GPVI, which further regulates the thrombus formation.


Assuntos
Coagulação Sanguínea/fisiologia , Integrina alfa2beta1/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Antitrombinas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Colágeno Tipo I/farmacologia , Humanos , Integrina alfa2beta1/antagonistas & inibidores , Adesividade Plaquetária/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Fluxo Pulsátil , Antagonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/metabolismo
12.
Blood ; 103(3): 903-11, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14504096

RESUMO

Glycoprotein (GP) VI is the major receptor responsible for platelet activation by collagen, but the collagen-binding surface of GPVI is unknown. To address this issue we expressed, from insect cells, the immunoglobulin (Ig)-like ectodomains (residues 1-185) of human and murine GPVI, called hD1D2 and mD1D2, respectively. Both proteins bound specifically to collagen-related peptide (CRP), a GPVI-specific ligand, but hD1D2 bound CRP more strongly than did mD1D2. Molecular modeling and sequence comparison identified key differences between hD1D2 and mD1D2. Ten mutant hD1D2s were expressed, of which 4 had human residues replaced by their murine counterpart, and 6 had replacements by alanine. CRP binding studies with these mutants demonstrated that the exchange of lysine at position 59 for the corresponding murine glutamate substantially reduced binding to CRP. The position of lysine59 on the apical surface of GPVI suggests a mode of CRP binding analogous to that used by the related killer cell Ig-like receptors to bind HLA. This surface was confirmed as critical for collagen binding by epitope mapping of an inhibitory phage antibody against GPVI. This anti-GPVI, clone 10B12, gave dose-dependent inhibition of the hD1D2-collagen interaction. Clone 10B12 inhibited activation of platelets by CRP and collagen in aggregometry and thrombus formation by the latter in whole blood perfusion. Antibody 10B12 showed significantly reduced binding to the hD1D2-E59, and, on that basis, the GPVI:10B12 interface was modeled.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos , Glicoproteínas da Membrana de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/genética , Sequência de Aminoácidos , Animais , Anticorpos Bloqueadores , Sequência de Bases , Sítios de Ligação/genética , Colágeno/metabolismo , DNA Complementar/genética , Antígenos HLA/metabolismo , Humanos , Técnicas In Vitro , Ligantes , Lisina/química , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Glicoproteínas da Membrana de Plaquetas/imunologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Estrutura Terciária de Proteína , Receptores Imunológicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
13.
Blood ; 101(11): 4372-9, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12560230

RESUMO

Interaction of platelets with collagen under conditions of blood flow is a multi-step process with tethering via glycoprotein IbIXV (GPIbIXV) over von Willebrand factor, adhesion by direct interaction with the integrin GPIaIIa, and signaling via GPVI. GPVI can be specifically agonized by cross-linked collagen-related peptide (CRP-XL), which results in a signaling cascade very similar to that evoked by native collagen. The GPVI gene has 2 common alleles that differ by 3 replacements in the glycosylated stem and 2 in the cytoplasmic domain. We used CRP-XL to elucidate the variation in responses observed in platelet function in different individuals. We observed a 3-fold difference in the response to CRP-XL in platelet aggregation when comparing platelets from 10 high-frequency allele homozygotes with 8 low-frequency ones (2-way analysis of variance [ANOVA], P <.0001). The difference in functional responses was reflected in fibrinogen binding and in downstream signaling events as measured by tyrosine phosphorylation, the expression of P-selectin, and the binding of annexin V and the generation of thrombin on the platelet surface (2-way ANOVA, P <.001). Platelets homozygous for the low-frequency allele tended to be less able to form a thrombus on a collagen surface in flowing whole blood or in the platelet function analyzer-100 (t test, P =.065 and P =.061, respectively). The functional difference was correlated to a difference in total and membrane-expressed GPVI measured by monoclonal and polyclonal antibodies. This study demonstrates for the first time that platelet function may be altered by allelic differences in GPVI.


Assuntos
Peptídeos , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/fisiologia , Polimorfismo de Nucleotídeo Único , Adulto , Proteínas de Transporte/farmacologia , Colágeno/farmacologia , Feminino , Frequência do Gene , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Receptores de Colágeno , Trombina/biossíntese , Trombina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA