Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Commun Biol ; 7(1): 842, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987383

RESUMO

Identifying high-affinity antibodies in human serum is challenging due to extremely low number of circulating B cells specific to the desired antigens. Delays caused by a lack of information on the immunogenic proteins of viral origin hamper the development of therapeutic antibodies. We propose an efficient approach allowing for enrichment of high-affinity antibodies against pathogen proteins with simultaneous epitope mapping, even in the absence of structural information about the pathogenic immunogens. To screen therapeutic antibodies from blood of recovered donors, only pathogen transcriptome is required to design an antigen polypeptide library, representing pathogen proteins, exposed on the bacteriophage surface. We developed a two-dimensional screening approach enriching lentiviral immunoglobulin libraries from the convalescent or vaccinated donors against bacteriophage library expressing the overlapping set of polypeptides covering the spike protein of SARS-CoV-2. This platform is suitable for pathogen-specific immunoglobulin enrichment and allows high-throughput selection of therapeutic human antibodies.


Assuntos
COVID-19 , Ensaios de Triagem em Larga Escala , Biblioteca de Peptídeos , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Ensaios de Triagem em Larga Escala/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Imunoglobulinas/imunologia , Imunoglobulinas/genética , Anticorpos Antivirais/imunologia , Mapeamento de Epitopos/métodos
2.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242087

RESUMO

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigenômica , Genômica , Glioblastoma/genética , Glioblastoma/patologia , Análise de Célula Única , Microambiente Tumoral , Heterogeneidade Genética
3.
Neuro Oncol ; 26(4): 640-652, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141254

RESUMO

BACKGROUND: The TERT promoter mutation (TPM) is acquired in most IDH-wildtype glioblastomas (GBM) and IDH-mutant oligodendrogliomas (OD) enabling tumor cell immortality. Previous studies on TPM clonality show conflicting results. This study was performed to determine whether TPM is clonal on a tumor-wide scale. METHODS: We investigated TPM clonality in relation to presumed early events in 19 IDH-wildtype GBM and 10 IDH-mutant OD using 3-dimensional comprehensive tumor sampling. We performed Sanger sequencing on 264 tumor samples and deep amplicon sequencing on 187 tumor samples. We obtained tumor purity and copy number estimates from whole exome sequencing. TERT expression was assessed by RNA-seq and RNAscope. RESULTS: We detected TPM in 100% of tumor samples with quantifiable tumor purity (219 samples). Variant allele frequencies (VAF) of TPM correlate positively with chromosome 10 loss in GBM (R = 0.85), IDH1 mutation in OD (R = 0.87), and with tumor purity (R = 0.91 for GBM; R = 0.90 for OD). In comparison, oncogene amplification was tumor-wide for MDM4- and most EGFR-amplified cases but heterogeneous for MYCN and PDGFRA, and strikingly high in low-purity samples. TPM VAF was moderately correlated with TERT expression (R = 0.52 for GBM; R = 0.65 for OD). TERT expression was detected in a subset of cells, solely in TPM-positive samples, including samples equivocal for tumor. CONCLUSIONS: On a tumor-wide scale, TPM is among the earliest events in glioma evolution. Intercellular heterogeneity of TERT expression, however, suggests dynamic regulation during tumor growth. TERT expression may be a tumor cell-specific biomarker.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Telomerase , Humanos , Neoplasias Encefálicas/patologia , Glioma/patologia , Glioblastoma/genética , Glioblastoma/patologia , Oligodendroglioma/genética , Mutação , Biomarcadores Tumorais/genética , Isocitrato Desidrogenase/genética , Telomerase/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Ciclo Celular/genética
4.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232729

RESUMO

ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily. LonA and LonC proteases are soluble cytoplasmic enzymes, whereas LonBs are membrane-bound. Based on an analysis of the available sequences of Lon proteases, we identified a number of enzymes currently assigned to the LonB subfamily that, although presumably membrane-bound, include structural features more similar to their counterparts in the LonA subfamily. This observation was confirmed by the crystal structure of the proteolytic domain of the enzyme previously assigned as Bacillus subtilis LonB, combined with the modeled structure of its ATPase domain. Several structural features present in both domains differ from their counterparts in either LonA or LonB subfamilies. We thus postulate that this enzyme is the founding member of a newly identified LonBA subfamily, so far found only in the gene sequences of firmicutes.


Assuntos
Protease La , Proteases Dependentes de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Hidrolases/metabolismo , Protease La/genética , Protease La/metabolismo , Proteoma/metabolismo
5.
Front Pharmacol ; 12: 773198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938188

RESUMO

The design of effective target-specific drugs for COVID-19 treatment has become an intriguing challenge for modern science. The SARS-CoV-2 main protease, Mpro, responsible for the processing of SARS-CoV-2 polyproteins and production of individual components of viral replication machinery, is an attractive candidate target for drug discovery. Specific Mpro inhibitors have turned out to be promising anticoronaviral agents. Thus, an effective platform for quantitative screening of Mpro-targeting molecules is urgently needed. Here, we propose a pre-steady-state kinetic analysis of the interaction of Mpro with inhibitors as a basis for such a platform. We examined the kinetic mechanism of peptide substrate binding and cleavage by wild-type Mpro and by its catalytically inactive mutant C145A. The enzyme induces conformational changes of the peptide during the reaction. The inhibition of Mpro by boceprevir, telaprevir, GC-376, PF-00835231, or thimerosal was investigated. Detailed pre-steady-state kinetics of the interaction of the wild-type enzyme with the most potent inhibitor, PF-00835231, revealed a two-step binding mechanism, followed by covalent complex formation. The C145A Mpro mutant interacts with PF-00835231 approximately 100-fold less effectively. Nevertheless, the binding constant of PF-00835231 toward C145A Mpro is still good enough to inhibit the enzyme. Therefore, our results suggest that even noncovalent inhibitor binding due to a fine conformational fit into the active site is sufficient for efficient inhibition. A structure-based virtual screening and a subsequent detailed assessment of inhibition efficacy allowed us to select two compounds as promising noncovalent inhibitor leads of SARS-CoV-2 Mpro.

6.
Antibiotics (Basel) ; 9(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252356

RESUMO

The global spread of antibiotic resistance is forcing the scientific community to find new molecular strategies to counteract it. Deep functional profiling of microbiomes provides an alternative source for the discovery of novel antibiotic producers and probiotics. Recently, we implemented this ultrahigh-throughput screening approach for the isolation of Bacillus pumilus strains efficiently producing the ribosome-targeting antibiotic amicoumacin A (Ami). Proteomics and metabolomics revealed essential insight into the activation of Ami biosynthesis. Here, we applied omics to boost Ami biosynthesis, providing the optimized cultivation conditions for high-scale production of Ami. Ami displayed a pronounced activity against Lactobacillales and Staphylococcaceae, including methicillin-resistant Staphylococcus aureus (MRSA) strains, which was determined using both classical and massive single-cell microfluidic assays. However, the practical application of Ami is limited by its high cytotoxicity and particularly low stability. The former is associated with its self-lactonization, serving as an improvised intermediate state of Ami hydrolysis. This intramolecular reaction decreases Ami half-life at physiological conditions to less than 2 h, which is unprecedented for a terminal amide. While we speculate that the instability of Ami is essential for Bacillus ecology, we believe that its stable analogs represent attractive lead compounds both for antibiotic discovery and for anticancer drug development.

7.
J Neurooncol ; 142(3): 479-487, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30796745

RESUMO

PURPOSE: Telomere length-associated SNPs have been associated with incidence and survival rates for malignant brain tumors such as glioma. Here, we study the influence of genetically determined lymphocyte telomere length (LTL) by comparing telomerase associated SNPs between the most common non-malignant brain tumor, i.e. meningioma, and healthy controls. METHODS/PATIENTS: One thousand fifty-three (1053) surgically treated meningioma patients and 4437 controls of Western European ancestry were included. Germline DNA was genotyped for 8 SNPs previously significantly associated with LTL. Genotypically-estimated LTL was then calculated by summing each SNP's genotypically-specified telomere length increase in base pairs (bp) for each person. Odds ratios for genotypically-estimated LTL in meningioma cases and controls were evaluated using logistic regression with the first two ancestral principal components and sex as covariates. RESULTS: Three out of the eight evaluated LTL SNPs were significantly associated with increased meningioma risk (rs10936599: OR 1.14, 95% CI 1.01-1.28, rs2736100: OR 1.13, 95% CI 1.03-1.25, rs9420907: OR 1.22, 95% CI 1.07-1.39). Only rs9420907 remained significant after correction for multiple testing. Average genotypically-estimated LTL was significantly longer for those with meningioma compared to controls [mean cases: 560.2 bp (standard error (SE): 4.05 bp), mean controls: 541.5 bp (SE: 2.02 bp), logistic regression p value = 2.13 × 10-5]. CONCLUSION: Increased genotypically-estimated LTL was significantly associated with increased meningioma risk. A role for telomere length in the pathophysiology of meningioma is novel, and could lead to new insights on the etiology of meningioma.


Assuntos
Leucócitos/patologia , Neoplasias Meníngeas/etiologia , Meningioma/etiologia , Polimorfismo de Nucleotídeo Único , Homeostase do Telômero , Estudos de Casos e Controles , Feminino , Seguimentos , Genótipo , Humanos , Leucócitos/metabolismo , Masculino , Neoplasias Meníngeas/patologia , Meningioma/patologia , Prognóstico , Fatores de Risco
8.
Proc Natl Acad Sci U S A ; 115(50): 12728-12732, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478037

RESUMO

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.


Assuntos
Fungos/genética , Proteínas Luminescentes/genética , Sequência de Aminoácidos , Animais , Vias Biossintéticas/genética , Ácidos Cafeicos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Duplicação Gênica/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Alinhamento de Sequência , Xenopus laevis
9.
Cancer ; 124(18): 3742-3752, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30311632

RESUMO

BACKGROUND: Although increased height has been associated with osteosarcoma risk in previous epidemiologic studies, to the authors' knowledge the relative contribution of stature during different developmental timepoints remains unclear. Furthermore, the question of how genetic determinants of height impact osteosarcoma etiology remains unexplored. Genetic variants associated with stature in previous genome-wide association studies may be biomarkers of osteosarcoma risk. METHODS: The authors tested the associations between osteosarcoma risk and polygenic scores for adult height (416 variants), childhood height (6 variants), and birth length (5 variants) in 864 osteosarcoma cases and 1879 controls of European ancestry. RESULTS: Each standard deviation increase in the polygenic score for adult height, corresponding to a 1.7-cm increase in stature, was found to be associated with a 1.10-fold increase in the risk of osteosarcoma (95% confidence interval [95% CI], 1.01-1.19; P =.027). Each standard deviation increase in the polygenic score for childhood height, corresponding to a 0.5-cm increase in stature, was associated with a 1.10-fold increase in the risk of osteosarcoma (95% CI, 1.01-1.20; P =.023). The polygenic score for birth length was not found to be associated with osteosarcoma risk (P =.11). When adult and childhood height scores were modeled together, they were found to be independently associated with osteosarcoma risk (P =.037 and P = .043, respectively). An expression quantitative trait locus for cartilage intermediate layer protein 2 (CILP2), rs8103992, was significantly associated with osteosarcoma risk after adjustment for multiple comparisons (odds ratio, 1.35; 95% CI, 1.16-1.56 [P = 7.93×10-5 and Padjusted =.034]). CONCLUSIONS: A genetic propensity for taller adult and childhood height attainments contributed independently to osteosarcoma risk in the current study data. These results suggest that the biological pathways affecting normal bone growth may be involved in osteosarcoma etiology.


Assuntos
Estatura/genética , Neoplasias Ósseas/genética , Osteossarcoma/genética , Adulto , Neoplasias Ósseas/epidemiologia , California/epidemiologia , Estudos de Casos e Controles , Criança , Desenvolvimento Infantil/fisiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Herança Multifatorial/genética , Triagem Neonatal/métodos , Osteossarcoma/epidemiologia , Polimorfismo de Nucleotídeo Único , Sistema de Registros , Fatores de Risco , População Branca/genética , População Branca/estatística & dados numéricos , Adulto Jovem
10.
Cancer Epidemiol Biomarkers Prev ; 27(10): 1151-1158, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30038050

RESUMO

Background: The genetic etiology of osteosarcoma remains poorly understood despite the publication of a genome-wide association study. Association between HLA genetic variants and risk of several cancers has been observed, but HLA variation is not well captured by standard SNP arrays.Methods: We genotyped 207 Californian pediatric osteosarcoma cases and 696 controls of European ancestry using a custom genome-wide array supplemented with approximately 6,000 additional probes across the MHC region. We subsequently imputed 4-digit classical HLA alleles using a reference panel of 5,225 individuals who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for ancestry-informative principal components, and top associations from the discovery analysis underwent replication in an independent dataset of 657 cases and 1,183 controls.Results: Three highly correlated HLA class II variants (r 2 = 0.33-0.98) were associated with osteosarcoma risk in discovery analyses, including HLA-DRB1*0301 (OR = 0.52; P = 3.2 × 10-3), HLA-DQA1*0501 (OR = 0.74; P = 0.031), and HLA-DQB1*0201 (OR = 0.51; P = 2.7 × 10-3). Similar associations were observed in the replication data (P range = 0.011-0.037). Meta-analysis of the two datasets identified HLA-DRB1*0301 as the most significantly associated variant (ORmeta = 0.62; P meta = 1.5 × 10-4), reaching Bonferroni-corrected statistical significance. The meta-analysis also revealed a second significant independent signal at HLA-DQA1*01:01 (ORmeta = 1.33, P meta = 1.2 × 10-3), and a third suggestive association at HLA-DQB1*0302 (ORmeta = 0.73, P meta = 6.4 × 10-3).Conclusions: Multiple independent HLA class II alleles may influence osteosarcoma risk.Impact: Additional work is needed to extend our observations to other patient populations and to clarify the potential causal mechanisms underlying these associations. Understanding immunologic contributions to the etiology of osteosarcoma may inform rational therapeutic targets. Cancer Epidemiol Biomarkers Prev; 27(10); 1151-8. ©2018 AACR.


Assuntos
Neoplasias Ósseas/patologia , Genes MHC da Classe II , Predisposição Genética para Doença , Osteossarcoma/patologia , Polimorfismo de Nucleotídeo Único , Adulto , Neoplasias Ósseas/genética , Estudos de Casos e Controles , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Metanálise como Assunto , Osteossarcoma/genética , Prognóstico , Adulto Jovem
11.
Neuro Oncol ; 20(5): 632-641, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29077933

RESUMO

Background: Rare multicentric lower-grade gliomas (LGGs) represent a unique opportunity to study the heterogeneity among distinct tumor foci in a single patient and to infer their origins and parallel patterns of evolution. Methods: In this study, we integrate clinical features, histology, and immunohistochemistry for 4 patients with multicentric LGG, arising both synchronously and metachronously. For 3 patients we analyze the phylogeny of the lesions using exome sequencing, including one case with a total of 8 samples from the 2 lesions. Results: One patient was diagnosed with multicentric isocitrate dehydrogenase 1 (IDH1) mutated diffuse astrocytomas harboring distinct IDH1 mutations, R132H and R132C; the latter mutation has been associated with Li-Fraumeni syndrome, which was subsequently confirmed in the patient's germline DNA and shown in additional cases with The Cancer Genome Atlas data. In another patient, phylogenetic analysis of synchronously arising grade II and grade III diffuse astrocytomas demonstrated a single shared mutation, IDH1 R132H, and revealed convergent evolution via non-overlapping mutations in ATRX and TP53. In 2 cases, there was divergent evolution of IDH1-mutated and 1p/19q-codeleted oligodendroglioma and IDH1-mutated and 1p/19q-intact diffuse astrocytoma, occurring synchronously in one case and metachronously in a second. Conclusions: Each tumor in multicentric LGG cases may arise independently or may diverge very early in their development, presenting as genetically and histologically distinct tumors. Comprehensive sampling of these lesions can therefore significantly alter diagnosis and management. Additionally, somatic IDH1 R132C mutation in either multicentric or solitary LGG identifies unsuspected germline TP53 mutation, validating the limited number of published cases.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Evolução Clonal , Genômica/métodos , Glioma/genética , Mutação , Adulto , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Filogenia , Adulto Jovem
12.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29056344

RESUMO

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Assuntos
Neoplasias/genética , Adulto , Criança , Análise por Conglomerados , DNA Polimerase II/genética , DNA Polimerase III/genética , Replicação do DNA , Humanos , Mutação , Neoplasias/classificação , Neoplasias/patologia , Neoplasias/terapia , Proteínas de Ligação a Poli-ADP-Ribose/genética
13.
Proc Natl Acad Sci U S A ; 114(40): 10743-10748, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916733

RESUMO

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


Assuntos
Epigenômica , Amplificação de Genes , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia/genética , Deleção de Sequência , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Perfilação da Expressão Gênica , Glioma/patologia , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Tumorais Cultivadas
14.
J Neurooncol ; 135(2): 237-244, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28721485

RESUMO

Although genome-wide association studies have identified several susceptibility loci for adult glioma, little is known regarding the potential contribution of genetic variation in the human leukocyte antigen (HLA) region to glioma risk. HLA associations have been reported for various malignancies, with many studies investigating selected candidate HLA polymorphisms. However, no systematic analysis has been conducted in glioma patients, and no investigation into potential non-additive effects has been described. We conducted comprehensive genetic analyses of HLA variants among 1746 adult glioma patients and 2312 controls of European-ancestry from the GliomaScan Consortium. Genotype data were generated with the Illumina 660-Quad array, and we imputed HLA alleles using a reference panel of 5225 individuals in the Type 1 Diabetes Genetics Consortium who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for population stratification using ancestry-informative principal components. Because alleles in different loci across the HLA region are linked, we created multigene haplotypes consisting of the genes DRB1, DQA1, and DQB1. Although none of the haplotypes were associated with glioma in additive models, inclusion of a dominance term significantly improved the model for multigene haplotype HLA-DRB1*1501-DQA1*0102-DQB1*0602 (P = 0.002). Heterozygous carriers of the haplotype had an increased risk of glioma [odds ratio (OR) 1.23; 95% confidence interval (CI) 1.01-1.49], while homozygous carriers were at decreased risk compared with non-carriers (OR 0.64; 95% CI 0.40-1.01). Our results suggest that the DRB1*1501-DQA1*0102-DQB1*0602 haplotype may contribute to the risk of glioma in a non-additive manner, with the positive dominance effect partly explained by an epistatic interaction with HLA-DRB1*0401-DQA1*0301-DQB1*0301.


Assuntos
Neoplasias Encefálicas/genética , Predisposição Genética para Doença , Glioma/genética , Antígenos HLA/genética , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Haplótipos , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , População Branca/genética
15.
Carcinogenesis ; 37(6): 576-582, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27207662

RESUMO

Aberrant telomere lengthening is an important feature of cancer cells in adults and children. In addition to somatic mutations, germline polymorphisms in telomere maintenance genes impact telomere length. Whether these telomere-associated polymorphisms affect risk of childhood malignancies remains largely unexplored. We collected genome-wide data from three groups with pediatric malignancies [neuroblastoma (N = 1516), acute lymphoblastic leukemia (ALL) (N = 958) and osteosarcoma (N = 660)] and three control populations (N = 6892). Using case-control comparisons, we analyzed eight single nucleotide polymorphisms (SNPs) in genes definitively associated with interindividual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208 and RTEL1 Six of these SNPs were associated (P < 0.05) with neuroblastoma risk, one with leukemia risk and one with osteosarcoma risk. The allele associated with longer LTL increased cancer risk for all these significantly associated SNPs. Using a weighted linear combination of the eight LTL-associated SNPs, we observed that neuroblastoma patients were predisposed to longer LTL than controls, with each standard deviation increase in genotypically estimated LTL associated with a 1.15-fold increased odds of neuroblastoma (95%CI = 1.09-1.22; P = 7.9×10(-7)). This effect was more pronounced in adolescent-onset neuroblastoma patients (OR = 1.46; 95%CI = 1.03-2.08). A one standard deviation increase in genotypically estimated LTL was more weakly associated with osteosarcoma risk (OR = 1.10; 95%CI = 1.01-1.19; P = 0.017) and leukemia risk (OR = 1.07; 95%CI = 1.00-1.14; P = 0.044), specifically for leukemia patients who relapsed (OR = 1.19; 95%CI = 1.01-1.40; P = 0.043). These results indicate that genetic predisposition to longer LTL is a newly identified risk factor for neuroblastoma and potentially for other cancers of childhood.


Assuntos
Predisposição Genética para Doença , Neuroblastoma/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Homeostase do Telômero , Adolescente , Neoplasias Ósseas/genética , Estudos de Casos e Controles , Criança , Estudo de Associação Genômica Ampla , Humanos , Leucócitos/fisiologia , Osteossarcoma/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adulto Jovem
16.
Cancer Epidemiol Biomarkers Prev ; 25(7): 1043-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27197291

RESUMO

BACKGROUND: Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Shorter mean telomere length in leukemic cells has been associated with more aggressive disease. Germline polymorphisms in telomere maintenance genes affect telomere length and may contribute to CLL susceptibility. METHODS: We collected genome-wide data from two groups of patients with CLL (N = 273) and two control populations (N = 5,725). In ancestry-adjusted case-control comparisons, we analyzed eight SNPs in genes definitively associated with inter-individual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208, and RTEL1 RESULTS: Three of the eight LTL-associated SNPs were associated with CLL risk at P < 0.05, including those near: TERC [OR, 1.46; 95% confidence interval (CI), 1.15-1.86; P = 1.8 × 10(-3)], TERT (OR = 1.23; 95% CI, 1.02-1.48; P = 0.030), and OBFC1 (OR, 1.36; 95% CI, 1.08-1.71; P = 9.6 × 10(-3)). Using a weighted linear combination of the eight LTL-associated SNPs, we observed that CLL patients were predisposed to longer LTL than controls in both case-control sets (P = 9.4 × 10(-4) and 0.032, respectively). CLL risk increased monotonically with increasing quintiles of the weighted linear combination. CONCLUSIONS: Genetic variants in TERC, TERT, and OBFC1 are associated with both longer LTL and increased CLL risk. Because the human CST complex competes with shelterin for telomeric DNA, future work should explore the role of OBFC1 and other CST complex genes in leukemogenesis. IMPACT: A genetic predisposition to longer telomere length is associated with an increased risk of CLL, suggesting that the role of telomere length in CLL etiology may be distinct from its role in disease progression. Cancer Epidemiol Biomarkers Prev; 25(7); 1043-9. ©2016 AACR.


Assuntos
Biomarcadores Tumorais/genética , Predisposição Genética para Doença , Variação Genética , Leucemia Linfocítica Crônica de Células B/genética , Homeostase do Telômero/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
17.
Oncotarget ; 6(40): 42468-77, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26646793

RESUMO

Telomere maintenance has emerged as an important molecular feature with impacts on adult glioma susceptibility and prognosis. Whether longer or shorter leukocyte telomere length (LTL) is associated with glioma risk remains elusive and is often confounded by the effects of age and patient treatment. We sought to determine if genotypically-estimated LTL is associated with glioma risk and if inherited single nucleotide polymorphisms (SNPs) that are associated with LTL are glioma risk factors. Using a Mendelian randomization approach, we assessed differences in genotypically-estimated relative LTL in two independent glioma case-control datasets from the UCSF Adult Glioma Study (652 patients and 3735 controls) and The Cancer Genome Atlas (478 non-overlapping patients and 2559 controls). LTL estimates were based on a weighted linear combination of subject genotype at eight SNPs, previously associated with LTL in the ENGAGE Consortium Telomere Project. Mean estimated LTL was 31bp (5.7%) longer in glioma patients than controls in discovery analyses (P = 7.82x10-8) and 27bp (5.0%) longer in glioma patients than controls in replication analyses (1.48x10-3). Glioma risk increased monotonically with each increasing septile of LTL (O.R.=1.12; P = 3.83x10-12). Four LTL-associated SNPs were significantly associated with glioma risk in pooled analyses, including those in the telomerase component genes TERC (O.R.=1.14; 95% C.I.=1.03-1.28) and TERT (O.R.=1.39; 95% C.I.=1.27-1.52), and those in the CST complex genes OBFC1 (O.R.=1.18; 95% C.I.=1.05-1.33) and CTC1 (O.R.=1.14; 95% C.I.=1.02-1.28). Future work is needed to characterize the role of the CST complex in gliomagenesis and further elucidate the complex balance between ageing, telomere length, and molecular carcinogenesis.


Assuntos
Neoplasias Encefálicas/genética , Predisposição Genética para Doença/genética , Glioma/genética , Leucócitos/metabolismo , Telômero/genética , Adulto , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Fatores de Risco
18.
Cancer Res ; 75(22): 4884-94, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26527286

RESUMO

Genome-wide association studies (GWAS) have identified SNPs in six genes that are associated with childhood acute lymphoblastic leukemia (ALL). A lead SNP was found to occur on chromosome 9p21.3, a region that is deleted in 30% of childhood ALLs, suggesting the presence of causal polymorphisms linked to ALL risk. We used SNP genotyping and imputation-based fine-mapping of a multiethnic ALL case-control population (Ncases = 1,464, Ncontrols = 3,279) to identify variants of large effect within 9p21.3. We identified a CDKN2A missense variant (rs3731249) with 2% allele frequency in controls that confers three-fold increased risk of ALL in children of European ancestry (OR, 2.99; P = 1.51 × 10(-9)) and Hispanic children (OR, 2.77; P = 3.78 × 10(-4)). Moreover, of 17 patients whose tumors displayed allelic imbalance at CDKN2A, 14 preferentially retained the risk allele and lost the protective allele (PBinomial = 0.006), suggesting that the risk allele provides a selective advantage during tumor growth. Notably, the CDKN2A variant was not significantly associated with melanoma, glioblastoma, or pancreatic cancer risk, implying that this polymorphism specifically confers ALL risk but not general cancer risk. Taken together, our findings demonstrate that coding polymorphisms of large effect can underlie GWAS "hits" and that inherited polymorphisms may undergo directional selection during clonal expansion of tumors.


Assuntos
Genes p16 , Predisposição Genética para Doença/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudos de Casos e Controles , Criança , Evolução Molecular , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
19.
Cancer Cell ; 28(3): 307-317, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26373278

RESUMO

The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Mutação/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Glioma/genética , Humanos , Filogenia , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética , Regulação para Cima/genética
20.
Methods Mol Biol ; 1321: 389-404, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082236

RESUMO

Design of drug with prolonged therapeutic action is one of the rapid developing fields of modern medical science and required implementation of different methods of protein chemistry and molecular biology. There are several therapeutic proteins needing increasing of their stability, pharmacokinetic, and pharmacodynamics parameters. To make long-live DNA-encoded drug PEGylation was proposed. Alternatively polysialic (colominic) acid, extracted from the cell wall of E. coli, fractionated to the desired size by anion-exchange chromatography and chemically activated to the amine-reactive aldehyde form, may be chemically attached to the polypeptide chain. Conjugates of proteins and polysialic acid generally resemble properties of protein-PEG conjugates, but possess significant negative net charge and are thought to be fully degradable after endocytosis due to the presence of intracellular enzymes, hydrolyzing the polysialic acid. Complete biodegradation of the polysialic acid moiety makes this kind of conjugates preferable for creation of drugs, intended for chronic use. Here, we describe two different protocols of chemical polysialylation. First protocol was employed for the CHO-derived human butyrylcholinesterase with optimized for recovery of specific enzyme activity. Polysialic acid moieties are attached at various lysine residues. Another protocol was developed for high-yield conjugation of human insulin; major conjugation point is the N-terminal residue of the insulin's light chain. These methods may allow to produce polysialylated conjugates of various proteins or polypeptides with reasonable yield and without significant loss of functional activity.


Assuntos
Proteínas Recombinantes/metabolismo , Ácidos Siálicos/metabolismo , Animais , Butirilcolinesterase/metabolismo , Células CHO , Linhagem Celular , Cricetulus , Escherichia coli/metabolismo , Humanos , Insulina/metabolismo , Lisina/metabolismo , Peptídeos/metabolismo , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA