Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arthrosc Tech ; 12(12): e2343-e2352, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38196866

RESUMO

Injectable implants constitute a newly developed treatment class in the battle against osteoarthritis. They consist of water-formulated supramolecular polymer, coming from a new class of resorbable biomedical materials, and are implanted in encapsulated joints in a liquid form, where they solidify to form a tough, elastic, and cushioning layer between the joint surfaces. To resort any effect, intra-articular delivery should be guaranteed, and the implant should be distributed throughout the entire joint space. Traditional implantation techniques do not seem to suffice for this new implant class, being either imprecise (traditional injection) or overly invasive (open procedures and traditional arthroscopic surgery). We describe a needle arthroscopic implantation technique to reap the benefits of both worlds, ensuring precise implant delivery while avoiding unnecessarily invasive procedures. This study depicts our needle arthroscopic technique for implantation of injectable implants in the ankle, first metatarsophalangeal joint, and first carpometacarpal joint.

2.
Mater Sci Eng C Mater Biol Appl ; 120: 111702, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545861

RESUMO

Pelvic organ prolapse (POP) is a multifactorial condition characterized by the descent of the pelvic organs due to the loss of supportive tissue strength. This is presumably caused by the decreased fibroblast function and the subsequent change in the quality of the extracellular matrix. The correction of POP using an implant intends to provide mechanical support to the pelvic organs and to stimulate a moderate host response. Synthetic polypropylene (PP) implants were commonly used for the correction of prolapse. Although they were successful in providing support, these implants have been associated with clinical complications in the long term due to substantial foreign body response and inappropriate tissue integration. The complications can be avoided or minimized by engineering a biocompatible and fully absorbable implant with optimized mechanical and structural characteristics that favor more appropriate cellular interactions with the implant. Therefore, in this study, we evaluated implants comprised of poly-4-hydroxybutyrate (P4HB), a fully absorbable material with high mechanical strength, as an alternative to PP. The P4HB implants were knitted in four unique designs with different pore shapes ranging from a more rectangular geometry- as it is in PP implant- to a rounded geometry, to determine the effect of the implant structure on the textural and mechanical properties and subsequent cell-matrix interaction. The cellular response was investigated by seeding primary vaginal fibroblasts isolated from patients with POP. P4HB favored cellular functions more than PP, as indicated by greater cell attachment and proliferation (P < 0.01), and significantly more collagen deposition (P4HB vs PP, 11.19 µg vs 6.67 µg) at 28 days culture (P < 0.05). All P4HB implants had higher strength and lower stiffness than the PP scaffold. The material and the design of the implant also influenced the behavior of vaginal fibroblasts. The aspect ratio of the vaginal POP fibroblasts cultured on the PP implant (1.61 ± 0.75) was significantly (P < 0.005) smaller than those cultured on P4HB implants (average 2.31 ± 0.09). The P4HB structure with rounded pores showed the lowest stiffness and highest fibroblast attachment and proliferation (P < 0.01). Overall, P4HB induces more matrix deposition compared to PP and knit design can further optimize cell behavior.


Assuntos
Prolapso de Órgão Pélvico , Polipropilenos , Implantes Absorvíveis , Matriz Extracelular , Feminino , Humanos , Hidroxibutiratos , Telas Cirúrgicas
3.
Mycologia ; 112(5): 895-907, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32716720

RESUMO

The complex hymenophore configuration of the oak mazegill (Daedalea quercina, Polyporales) is rarely quantified, although quantifications are important analytical tools to assess form and growth. We quantified the hymenophore configuration of the oak mazegill by manual counting of tubes and tubular branches and ends. Complementary measurements were made with the software AngioTool. We found that the number of tubular branches and ends varied substantially between specimens, with a positive correlation with hymenophore area (5-51 cm2). We then measured complexity as tubular branches and ends per area, and complexity was not correlated with the size of the basidiocarps. Basidiocarps from two locations were compared (Hald ege, N = 11; Hvidding krat, N = 7), and the prevalence of branches and that of ends were greater in the Hvidding krat hymenophores (P < 0.001 and P = 0.029, respectively). Additionally, lacunarity, a measure of complexity ("gappiness"), gave a higher score for the Hald ege hymenophores (P = 0.002). Lacunarity analysis of multiple species of Polyporales showed that the oak mazegill hymenophore is comparatively complex. Concerning factors that affect hymenophore complexity of the oak mazegill, we observed that greater hymenophore complexity was associated with abrupt boundaries between growth zones on the pileus surface. Several years of monitoring documented that basidiocarps can remodel to gravitational changes and heal from damage. In conclusion, intra- and interspecies differences of hymenophore configuration can be quantified. In oak mazegill, hymenophore complexity is not dependent on size per se, although abrupt borders between growth zones are associated with increased complexity. Some of the variation between basidiocarps may reflect aspects of the ecology of the individual fungus.


Assuntos
Carpóforos/citologia , Carpóforos/crescimento & desenvolvimento , Carpóforos/genética , Polyporales/citologia , Polyporales/crescimento & desenvolvimento , Polyporales/genética , Quercus/microbiologia , Dinamarca , Variação Genética , Filogenia
4.
JOR Spine ; 2(3): e1063, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31572980

RESUMO

OBJECTIVE: Possible regenerative treatments for lumbar intervertebral disc degeneration (DD) are rapidly emerging. There is consensus that the patient that would benefit most has early-stage DD, with a predicted deterioration in the near future. To identify this patient, the aim of this study was to identify prognostic factors for progression of DD. STUDY DESIGN: Systematic review. METHODS: A systematic search was performed on studies evaluating one or more prognostic factor(s) in the progression of DD. The criteria for inclusion were (a) patients diagnosed with DD on MRI, (b) progression of DD at follow-up, and (c) reporting of one or more prognostic factor(s) in progression of DD. Two authors independently assessed the methodological quality of the included studies. Due to heterogeneity in DD determinants and outcomes, only a best-evidence synthesis could be conducted. RESULTS: The search generated 3165 references, of which 16 studies met our inclusion criteria, involving 2.423 patients. Within these, a total of 23 clinical and environmental and 12 imaging factors were identified. There was strong evidence that disc herniation at baseline is associated with progression of DD at follow-up. There is limited evidence that IL6 rs1800795 genotype G/C male was associated with no progression of DD. Some clinical or environmental factors such as BMI, occupation and smoking were not associated with progression. CONCLUSIONS: Disc herniation is strongly associated with the progression of DD. Surprisingly, there was strong evidence that smoking, occupation, and several other factors were not associated with the progression of DD. Only one genetic variant may have a protective effect on progression, otherwise there was conflicting or only limited evidence for most prognostic factors. Future research into these prognostic factors with conflicting and limited evidence is not only needed to determine which patients should be targeted by regenerative therapies, but will also contribute to spinal phenotyping.

5.
Neurourol Urodyn ; 37(2): 566-580, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28799675

RESUMO

BACKGROUND: Polypropylene implants are used for the reconstructive surgery of urogynaecological disorders like pelvic organ prolapse, but severe complications associated with their use have been reported. There is evidence that surface properties and a difference in mechanical stiffness between the implant and the host tissue contribute to these adverse events. Electrospinning is an innovative engineering alternative that provides a biomimetic microstructure for implants, resulting in a different mechano-biological performance. AIM: The main objective of this review is to inform about the potential of electrospun matrices as an alternative modality for pelvic floor repair. METHODS: Publications with the following studies of electrospun matrices were reviewed: (i) the technique; (ii) in vitro use for soft tissue engineering; (iii) in vivo use for reconstruction of soft tissues in animals; and (iv) clinical use in humans. RESULTS: Electrospun matrices provide a synthetic mimic of natural extracellular matrix (ECM), favoring cellular attachment, proliferation and matrix deposition, through which a proper, low-inflammatory tissue-implant interaction can be established. Electrospun sheets can also be created with sufficient mechanical strength and stiffness for usage in prolapse surgery. CONCLUSION: Electrospun matrices mimic the structural topography of the extracellular matrix and can be functionalized for better biological performance. As such, they have great potential for the next generation of urogynecological implants. However, their long-term safety and efficacy must still be established in vivo.


Assuntos
Materiais Biomiméticos , Nanofibras , Diafragma da Pelve/cirurgia , Prolapso de Órgão Pélvico/cirurgia , Engenharia Tecidual/métodos , Animais , Matriz Extracelular , Humanos , Polipropilenos , Procedimentos de Cirurgia Plástica , Alicerces Teciduais
6.
Macromol Biosci ; 11(6): 722-30, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21400658

RESUMO

Since the early 1990s, tissue engineering has been heralded as a strategy that may solve problems associated with bone grafting procedures. The original concept of growing bone in the laboratory, however, has proven illusive due to biological, logistic, and regulatory problems. Fat-derived stem cells and synthetic polymers open new, more practicable routes for bone tissue engineering. In this paper, we highlight the potential of poly(L-lactide-co-caprolactone) (PLCL) to serve as a radiolucent scaffold in bone tissue engineering. It appears that PLCL quickly and preferentially binds adipose stem cells (ASCs), which proliferate rapidly and eventually differentiate into the osteogenic phenotype. An in vivo spinal fusion study in a goat model provides a preclinical proof-of-concept for a one-step surgical procedure with ASCs in bone tissue engineering.


Assuntos
Adipócitos/citologia , Materiais Biocompatíveis/química , Osso e Ossos/citologia , Poliésteres/química , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Feminino , Cabras , Modelos Animais , Osteonectina/análise , Osteonectina/biossíntese , Fusão Vertebral/métodos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA